- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Dual-band luminescent solar converter-coupled dye-sensitized solar cells for high performance semi-transparent photovoltaic device
摘要: We demonstrate a high-performance semi-transparent solar cell using a dye-sensitized solar cell (DSSC) coupled with a luminescent solar converter (LSC) that absorbs a dual band. We present an architecture of a sandwich-type, downshift (DS) LSC / DSSC / upconversion (UC) LSC. The DS LSC, including anthracene, converts ultraviolet light to visible light, and the UC LSC, which contains a dye pair of meso-tetraphenyl-tetrabenzoporphine palladium / 9,10-bis-penylethynyllanthrancane, converts near-infrared light into visible light. Thus, the dual band LSC improved the power conversion efficiency (PCE) of the DSSC without a significant decrease in visible transmittance. We optimize the concentration of the fluorescence dye to obtain maximum photoluminescence in each LSC. We also optimize backward scattering by introducing nanoparticle scatterers in UC LSC. The dual LSC-DSSC showed an average visible transmittance of 42% and achieved an PCE of up to 7.8%. Our incorporation of broadband-wavelength-harvestable LSCs with a DSSC presents a direction for semi-transparent photovoltaic devices.
关键词: Luminescence solar concentrator,Semi-transparent photovoltaic devices,Downshift,Photon upconversion,Dye-sensitized solar cells
更新于2025-11-19 16:46:39
-
Oligo(ethylene glycol)/alkyl-modified chromophore assemblies for photon upconversion in water
摘要: Molecular self-assembly is a powerful means to construct nanoscale materials with advanced photophysical properties. Although the protection of the photo-excited states from oxygen quenching is a critical issue, it still has been in an early phase of development. In this work, we demonstrate that a simple and typical molecular design for aqueous supramolecular assembly, modification of chromophoric unit with hydrophilic oligo(ethylene glycol) chains and hydrophobic alkyl chains, is effective to avoid oxygen quenching of triplet-triplet annihilation-based photon upconversion (TTA-UC). While a TTA-UC emission is completely quenched when the donor and acceptor are molecularly dispersed in chloroform, their aqueous co-assemblies exhibit a clear upconverted emission in air-saturated water even under extremely low chromophore concentrations down to 40 μM. The generalization of this nano-encapsulation approach offers new functions and applications using oxygen-sensitive species for supramolecular chemistry.
关键词: photon upconversion,photochemistry,oxygen quenching,self-assembly,triplet-triplet annihilation
更新于2025-09-23 15:23:52
-
Neara??Infrareda??toa??Visible Photon Upconversion by Introducing an Sa??T Absorption Sensitizer into a Metala??Organic Framework
摘要: Triplet-triplet annihilation-based photon upconversion (TTA-UC) of near-infrared (NIR) light to visible light in the solid-state remains as a great challenge due to the sensitizer aggregation that impedes the efficient triplet energy transfer. Herein, we successfully introduce a molecular sensitizer exhibiting direct singlet-to-triplet (S–T) absorption into a new emitter-based metal-organic framework (MOF) to achieve an efficient triplet sensitization and a NIR-to-visible TTA-UC in the solid-state.
关键词: photon upconversion,near-infrared light,metal-organic framework,singlet-to-triplet absorption,triplet-triplet annihilation
更新于2025-09-23 15:19:57
-
Performance enhancement of bulk heterojunction organic solar cells using photon upconverter
摘要: In this article, we show that significant performance enhancement can be obtained by incorporating a photo upconverter layer in bulk heterojunction organic solar cells (BHJ OSCs). We systematically optimize the photon upconversion process for P3HT:PCBM, PSBTBT:PCBM, PBDTTT-C:PCBM and PTB7-Th:PCBM based BHJ OSCs using a simple numerical model followed by optoelectronic simulations. After verifying the integrated model of upconversion with experimental reports, we analyze each type of BHJ OSC incorporating photon upconversion layer having optimized spectral characteristics and estimate efficiency enhancement of ~30.8% (4.55% → 5.95%), ~24.3% (5.02% → 6.24%), ~28.9% (6.35% → 8.19%) and ~16.9% (10.55% → 12.34%) for P3HT:PCBM, PSBTBT:PCBM, PBDTTT-C:PCBM and PTB7-Th:PCBM based OSCs, respectively. We then show that effect of photon upconversion and localized surface plasmon resonance on the best performing OSC material considered in this work i.e. PTB7-Th:PCBM, is non-linear and predict a performance boost of mere ~2.3% (12.32% → 12.62%) from additional effort (due to plasmon resonance). Finally, we discuss possibility of extending the efficiency of PTB7-Th:PCBM based BHJ OSC beyond 16% using concentrated sunlight and a practically realizable upconverter layer.
关键词: Organic solar cell,Photon upconversion,Bulk heterojunction,Concentrated sunlight
更新于2025-09-16 10:30:52
-
Precise Control of Localized Surface Plasmon Wavelengths Is Needed for Effective Enhancement of Triplet-Triplet Annihilation-Based Upconversion Emission
摘要: In this study, we demonstrate that the localized surface plasmon (LSP) resonance of metal nanoparticles, depending strictly on the generating wavelength of LSP resonance, can have both beneficial enhancement and harmful quenching effects on a triplet-triplet annihilation-based upconversion (TTA-UC) emission. When the LSP resonance band of anisotropic silver nanoprisms spectrally overlapped with the photoexcitation wavelength of a sensitizer and the fluorescence of an emitter, an increase in the photoexcitation efficiency and an acceleration of the radiative decay rate were respectively induced, resulting in an effective enhancement in the TTA-UC emission. Furthermore, the overlapping with the photoexcitation wavelength led to a significant decrease (93%) in the threshold light excitation intensity, which greatly enhances the figure-of-merit in TTA-UC systems. However, when the LSP resonance band overlapped with the phosphorescence band of the sensitizer, the TTA-UC emission was extremely quenched, accompanied by the enhanced phosphorescence and the decreased phosphorescence lifetime. These results suggest that the decrease in the TTA-UC emission is a result of the competition between the triplet-triplet energy transfer to the emitter and the LSP-induced nonradiative energy transfer to the silver nanoprisms from the triplet-excited sensitizer. This discovery of the conflicting effects of LSP resonance provides an important guideline: a precise adjustment of LSP resonance wavelengths is needed for the efficient enhancement of TTA-UC emission. This requirement is different from those of other fluorescence systems such as single downconverted fluorophores and lanthanide-based upconversion nanoparticles.
关键词: solid state,fluorescence,phosphorescence,silver nanoprisms,localized surface plasmon resonance,triplet-triplet annihilation,photon upconversion
更新于2025-09-10 09:29:36
-
Photon Upconverted Circularly Polarized Luminescence via Triplet-Triplet Annihilation
摘要: Circularly polarized luminescent materials are of increasing attention due to their potential applications in advanced optical technologies, such as chiroptical devices and optical sensing. Recently, in all reported circularly polarized luminescent materials, high-energy excitation results in low-energy or downconverted circularly polarized luminescence (CPL) emission. Although photon upconversion—i.e., the conversion of low-energy light into higher-energy emission, with a wide variety of applications—has been widely reported, the integration of photon upconversion and CPL in one chiral system to achieve higher-energy CPL emission has never been reported. Herein, a brief review is provided of recent achievements in photon-upconverted CPL via the triplet–triplet annihilation mechanism, focusing on the amplified dissymmetry factor glum through energy transfer process and dual upconverted and downconverted CPL emission through chirality and energy transfer process.
关键词: triplet–triplet annihilation,photon upconversion,energy transfer,triplet energy migration,circularly polarized luminescence
更新于2025-09-04 15:30:14