- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Three-Dimensional Segmentation and Quantitative Measurement of the Aqueous Outflow System of Intact Mouse Eyes Based on Spectral Two-Photon Microscopy Techniques
摘要: PURPOSE. To visualize and quantify the three-dimensional (3D) spatial relationships of the structures of the aqueous outflow system (AOS) within intact enucleated mouse eyes using spectral two-photon microscopy (TPM) techniques. METHODS. Spectral TPM, including two-photon autofluorescence (TPAF) and second-harmonic generation (SHG), were used to image the small structures of the AOS within the limbal region of freshly enucleated mouse eyes. Long infrared excitation wavelengths (930 nm) were used to reduce optical scattering and autofluorescent background. Image stacks were collected for 3D image rendering and structural segmentation. For anatomical reference, vascular perfusion with fluorescent-conjugated dextran (150 KDa) and trans-corneal perfusion with 0.1 lm fluorescent polystyrene beads were separately performed to identify the episcleral veins (EV) and the trabecular meshwork (TM) and Schlemm's canal (SC), respectively. RESULTS. Three-dimensional rendering and segmentation of spectral two-photon images revealed detailed structures of the AOS, including SC, collector channels (CC), and aqueous veins (AV). The collagen of the TM was detected proximal to SC. The long and short axes of the SC were 82.2 ± 22.2 μm and 6.7 ± 1.4 μm. The diameters of the CC averaged 25.6 ± 7.9 μm where they originated from the SC (ostia), enlarged to 34.1 ± 13.1 μm at the midpoint, and narrowed to 18.3 ± 4.8 μm at the junction of the AV. The diameter of the AV averaged 12.5 ± 3.4 μm. CONCLUSIONS. Spectral TPM can be used to reconstruct and measure the spatial relationships of both large and small AOS structures, which will allow for better understanding of distal aqueous outflow dynamics.
关键词: second-harmonic generation,aqueous outflow,nonlinear microscopy,glaucoma,two-photon fluorescence microscopy
更新于2025-11-21 11:08:12
-
BaHgGeSe4 and SrHgGeSe4: Two New Hg-based Infrared Nonlinear Optical Materials
摘要: New practically usable IR nonlinear optical (NLO) crystals, especially those suitable for high-efficient pumping of the commercial 1 μm laser, are in urgent demand. However, only a few new IR NLO materials have been grown into bulk crystals and realized IR laser output during the past twenty years due to the extreme difficulty in achieving the coexistence of various strongly-correlated properties. In the manuscript, based on the bonding characteristics of the Hg element and an efficient screening strategy for high-performance new crystals, we identified two new Hg-based IR nonlinear (NLO) materials, BaHgGeSe4 and SrHgGeSe4. They crystallize in the polar space group Ama2 with the distorted HgSe4 and GeSe4 tetrahedra aligned parallelly. They exhibit exceptional balance among all the preferred properties for practical applications, especially for high-efficient pumping of the commercial 1 μm laser: Their large band gap (~2.5 eV) can avoid the two-photon absorption of 1 μm laser and increase the laser damage threshold; They are phase matchable with very strong NLO response (5×AgGaS2); They can cover both the 3-5 μm and 8-12 μm atmospheric windows. Moreover, they melt congruently, which indicate that bulk crystals can be obtained by the Bridgman method. Their overall properties outperform the traditional materials AgGaQ2 (Q = S, Se) in a large degree. Detailed structural analysis and calculations elucidate the crucial role of cations in regulating the packing of the anionic groups and that of the highly-polarizable HgSe4 in balancing optical properties.
关键词: phase matchability,second harmonic generation,BaHgGeSe4,IR nonlinear optical materials,SrHgGeSe4,congruent-melting,Hg-based chalcogenides
更新于2025-11-19 16:56:35
-
Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity
摘要: Many borate crystals feature nonlinear optical properties that allow for efficient frequency conversion of common lasers down into the ultraviolet spectrum. Twinning may degrade crystal quality and affect nonlinear optical properties, in particular if crystals are composed of twin domains with opposing polarities. Here, we use measurements of optical activity to demonstrate the existence of inversion twins within single crystals of YAl3(BO3)4 (YAB) and K2Al2B2O7 (KABO). We determine the optical rotatory dispersion of YAB and KABO throughout the visible spectrum using a spectrophotometer with rotatable polarizers. Space-resolved measurements of the optical rotation can be related to the twin structure and give estimates on the extent of twinning. The reported dispersion relations for the rotatory power of YAB and KABO may be used to assess crystal quality and to select twin-free specimens.
关键词: optical activity,inversion twin,YAB,optical rotatory dispersion,KABO,second harmonic generation,frequency conversion,K2Al2B2O7,NLO crystals,YAl3(BO3)4
更新于2025-10-22 19:40:53
-
Quantification of collagen fiber structure using second harmonic generation imaging and two-dimensional discrete Fourier transform analysis: Application to the human optic nerve head
摘要: Second Harmonic Generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively non-destructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This paper presents a 2D Discrete Fourier Transform (DFT) based method for collagen fiber structure analysis from SHG images. The method includes integrated Periodicity Plus Smooth Image Decomposition (PPSID) for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid-stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide-angle X-ray scattering (WAXS) and application of the presented method to other fibrous tissues.
关键词: Second Harmonic Generation,edge effect artefact correction,Discrete Fourier Transform,optic nerve head,collagen fiber structure,Non-linear microscopy
更新于2025-09-23 15:23:52
-
Synthesis, crystal structures, second harmonic generation response and temperature phase transitions of two noncentrosymmetric Cu(II)-hybrid halides compounds: [(R)-C7H16N2][CuX4] (X?= Cl or Br)
摘要: (R)-(+)-3-aminoquinuclidine was used in the synthesis of [(R)-C7H16N2][CuCl4] (1) and [(R)-C7H16N2][CuBr4] (2), which both contain similar [CuX4]2- anions (X = Cl or Br). The structures of the two compounds were determined using single-crystal X-ray diffraction. The use of enantiomerically pure sources of (R)-C7H14N2 forces crystallographic noncentrosymmetry. These materials crystallize in the chiral space group P212121 (No. 19), which exhibits the enantiomorphic crystal class 222 (D2). In the molecular arrangement, the [CuX4]2- anions are linked to the organic cations through N-H...X and C-H...X hydrogen bonds to form cation-anion-cation molecular units, which are held together by means of offset face-to-face interactions giving a three-dimensional network. Thermal stability of the crystals was ascertained by TG measurement. Compounds (1) and (2) display several phases transition with higher transition temperature at T = 100°C. The Kurtz and Perry powder method using Nd:YAG laser shows that their second harmonic generation (SHG) efficiencies are about 0.81 and 0.82 times as large as that of KH2PO4 (KDP), respectively. Such a chiral hybrid metal halides skeleton could provide a new platform for future engineering in the areas including information storage, light modulators and optoelectronic functionalities.
关键词: nonlinear optics,second harmonic generation,crystal structure,chiral hybrid halide,phase transitions
更新于2025-09-23 15:23:52
-
Local structural changes due to the electric field-induced migration of oxygen vacancies at Fe-doped SrTiO <sub/>3</sub> interfaces
摘要: We report on our study of dc voltage-induced structural changes at reduced and oxidized Fe-doped SrTiO3 (Fe:STO) electrode interfaces using second harmonic generation (SHG) together with photoluminescence (PL) method. We show that oxygen vacancy defects play a critical role in determining the local electrical and structural properties of interfacial depletion regions at Schottky junctions. The SHG results show that the dc electric field causes oxygen ions and vacancies to displace toward the anode and cathode in the low field regime, respectively. This process forms electrostrictive distortions within local interfacial depletion regions which are described by Fe:Ti-O bond stretching and bending. Differences in the EFISHG responses from the oxidized and reduced crystal interfaces are explained according to local oxygen vacancy concentrations and dynamics and their effects on the Schottky barrier heights and depletion region widths at each interface. These results are further supported by our PL measurements. Oxygen ion migration towards the Fe:STO surface leads to enhanced fluorescence intensities from in-gap acceptor states. We demonstrate that SHG and PL measurements are well suited for understanding and resolving the underlying causes of dielectric breakdown processes and device failure brought on by dc electric field and ionic defect migrations in perovskite-type electroceramics.
关键词: Photoluminescence,Oxygen Vacancy,Electroceramic,Second Harmonic Generation
更新于2025-09-23 15:23:52
-
Enhanced Second Harmonic Generation from Ferroelectric HfO <sub/>2</sub> -Based Hybrid Metasurfaces
摘要: Integrated nonlinear metasurfaces leading to high-efficiency optical second harmonic generation (SHG) are highly desirable for optical sensing, imaging, and quantum photonic systems. Compared to traditional metal-only metasurfaces, their hybrid counterparts, where a non-centrosymmetric nonlinear photonic material is incorporated in the near field of a metasurface, they can significantly boost SHG efficiency. However, it is difficult to integrate such devices on-chip due to material incompatibilities, thickness scaling challenges and the narrow band gaps of nonlinear optical materials. Here, we demonstrate significantly enhanced SHG in on-chip integrated metasurfaces by using nanometer thin films of ferroelectric Y:HfO2. This material has the merit of CMOS compatibility, ultra-violet transparency up to 250 nm and significant scalability down to sub 10 nm when deposited on silicon. We observe a twenty times magnitude enhancement of the SHG intensity from the hybrid metasurface compared to a bare ferroelectric HfO2 thin film. Moreover, a 3-fold SHG enhancement is observed from the hybrid metasurface compared to a control structure using non-ferroelectric HfO2, demonstrating a major contribution to the SHG signal from ferroelectric Y:HfO2. The effective second-order nonlinear optical coefficient χ(2) of Y:HfO2 is determined to be 6.0 ± 0.5 pm/V, which is comparable to other complex nonlinear photonic oxide materials. Our work provides a general pathway to build an efficient on-chip nanophotonic nonlinear light source for SHG using ferroelectric HfO2 thin films.
关键词: second harmonic generation (SHG),nonlinear photonics,metasurface,plasmonics,ferroelectric Y:HfO2
更新于2025-09-23 15:23:52
-
Reshaping the Second-Order Polar Response of Hybrid Metal–Dielectric Nanodimers
摘要: We combine the field confinement of plasmonics with the flexibility of multiple Mie resonances by bottom-up assembly of hybrid metal-dielectric nanodimers. We investigate the electromagnetic coupling between nanoparticles in heterodimers consisting of gold and barium titanate (BaTiO3 or BTO) nanoparticles through nonlinear second-harmonic spectroscopy and polarimetry. The overlap of the localized surface plasmon resonant dipole mode of the gold nanoparticle with the dipole and higher-order Mie resonant modes in the BTO nanoparticle lead to the formation of hybridized modes in the visible spectral range. We employ the pick-and-place technique to construct the hybrid nanodimers with controlled diameters by positioning the nanoparticles of different types next to each other under a scanning electron microscope. Through linear scattering spectroscopy, we observe the formation of hybrid modes in the nanodimers. We show that the modes can be directly accessed by measuring the dependence of the second-harmonic generation (SHG) signal on polarization and wavelength of the pump. We reveal both experimentally and theoretically that the hybridization of plasmonic and Mie-resonant modes leads to a strong reshaping of the SHG polarization dependence in the nanodimers, which depend on the pump wavelength. We compare the SHG signal of each hybrid nanodimer with the SHG signal of single BTO nanoparticles to estimate the enhancement factor due to the resonant mode coupling within the nanodimers. We report up to two orders of magnitude for the SHG signal enhancement compared to isolated BTO nanoparticles.
关键词: Dielectrics,Second-harmonic generation,Barium Titanate,Polar-dependence,Hybrid nanoantennas,Plasmonics
更新于2025-09-23 15:23:52
-
[IEEE 2018 20th International Conference on Transparent Optical Networks (ICTON) - Bucharest (2018.7.1-2018.7.5)] 2018 20th International Conference on Transparent Optical Networks (ICTON) - Changes in the Collagen Structure of Thyroid Nodule Capsules Determined by Polarization-Resolved Second Harmonic Generation Microscopy
摘要: Thyroid carcinomas represent a challenging problem as their differentiation from the much more frequent benign pathologies can be sometimes difficult. Automatic diagnostic approaches that can differentiate between malignant and benign thyroid nodules would be of great benefit for addressing thyroid pathologies. In this study we have used polarization-resolved second harmonic generation microscopy to investigate collagen organization in the fibrillar capsules surrounding human thyroid nodules. We demonstrate that imaging the collagen capsules at different laser beam polarization angles and fitting the second harmonic generation intensity with a theoretical curve can yield information on the nonzero components of the second order susceptibility tensor and the orientation of the collagen fibres. We have used this approach to differentiate between capsules surrounding the thyroid follicular adenoma and papillary carcinoma nodules. These results indicate that polarization-resolved second harmonic generation microscopy can provide additional information about the collagenous capsule surrounding thyroid nodules, which may complement intensity-based quantitative second harmonic generation microscopy and eventually traditional histopathologic examination.
关键词: second harmonic generation,thyroid nodules,collagen
更新于2025-09-23 15:22:29
-
Pb <sub/>2</sub> GaF <sub/>2</sub> (SeO <sub/>3</sub> ) <sub/>2</sub> Cl: Band Engineering Strategy by Aliovalent Substitution for Enlarging Bandgap while Keeping Strong Second Harmonic Generation Response
摘要: Wide bandgap and strong second-order generation (SHG) effect are two crucial but contradictory conditions for practical nonlinear optical (NLO) materials. Herein, a new NLO crystal Pb2GaF2(SeO3)2Cl (I) containing novel functional (GaO3F3)6? octahedra is designed and synthesized by a rational band engineering strategy with aliovalent substitution. Benefiting from the removal of transition metal cations and the introduction of bridged F anions, I exhibits the widest bandgap among all reported phase-matchable NLO selenites. Meanwhile, a strong SHG response more than 4.5 times of KH2PO4 (KDP) is maintained. The dominate role of the (GaO3F3)6? groups to the enlarged bandgap in I are elucidated by first-principles studies.
关键词: aliovalent substitution,second harmonic generation,nonlinear optical materials,selenites,band engineering
更新于2025-09-23 15:21:21