- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Passively Q-switched and mode-locked Erbium-doped fiber laser with topological insulator Bismuth Selenide (Bi2Se3) as saturable absorber at C-band region
摘要: We experimentally demonstrate Q-switched and mode-locked Erbium-doped fiber laser (EDFL) by using topological insulator (TI) Bismuth Selenide (Bi2Se3) as saturable absorber (SA). The fabricated Bi2Se3 SA exhibits modulation depth and saturation intensity at 39.8% and 90.2 MW/cm2, respectively. By incorporating the fabricated Bi2Se3 SA into the laser cavity, Q-switching operation is generated with repetition rate ranging from 23.5 kHz to 68.2 kHz, pulse width ranging from 2.4 μs to 8.6 μs and maximum peak power is calculated at 19.9 mW. Our cavity can also generate soliton mode-locked pulse with repetition rate of 23.3 MHz and pulse width of 0.63 ps by inserting an additional 5 m long single mode fiber (SMF) into the existing laser cavity. Spectral peaks due to Kelly side-bands and four wave mixing (FWM) were observed on the soliton spectrum. Both Q-switching and mode-locking pulses are stable in the laboratory environment, allowing the realization of compact and low cost pulsed fiber laser with Bi2Se3 SA for various photonics applications.
关键词: Topological insulator,Bismuth-selenide,Q-switched,EDFL,Mode-locked
更新于2025-11-28 14:24:03
-
Effect of incorporation of sulphur on the structural, morphological and optical studies of CdSe thin films deposited by solution processed spin coating technique
摘要: Ternary compound semiconductor CdSexS1-x (x = 1, 0.8, 0.6, 0.4, 0.2 and 0) thin films were prepared on glass substrates by using simple solution processed spin coating technique. Cadmium acetate, sodium selenosulfate and thiourea were used as source materials for Cd2+, Se2? and S2? ions, while triethanolamine was used as a capping agent. The 25% concentred NH4OH solution was used as a complex reagent and also used to adjust the pH of the final solution ~ 11. The deposition conditions (rotation speed 2000 rpm for 30 s and substrate dried in the air at 120 °C for 2 min) were remain same for all the samples. The as-deposited thin films on glass substrate were annealed at 350 °C for 30 min. The X-ray diffraction pattern shows that all the samples were polycrystalline in the nature with hexagonal structure. The most of prepared thin films were highly textured along (002) plane and peak position for plane (002) is shifted with change in composition ‘x’. The average crystallite size in CdSexS1-x thin films were found between 62.6 nm to 93.4 nm. Scanning electron microscopy images showed uniform deposition morphology with spherical shaped grains distributed over entire glass substrate. Samples CdSe0.8S0.2 and CdSe0.6S0.4 thin films indicated interesting morphological features with the combination of spherical shaped nanoparticles and interconnected nanofibers which form hierarchical flowerlike micro-structure. Energy dispersive X-Ray studies confirmed that thin films were having approximately same stoichiometry of atomic ratio of elements Cd, Se and S as present in volumetric ratio of the reactants in chemical solution. Fourier transform infrared studies confirmed the formation of the Cd(Se,S) bonding in materials. The optical band gap of CdSexS1-x thin films were found as direct band gap in the range of 1.82 eV to 2.32 eV. As the incorporation of sulphur element increases, the band gap of CdSexS1-x thin film also increases. The CdSexS1-x thin films can be used as absorption layer in solar photovoltaic cell which is due to wide and fine tenability of the energy band gap.
关键词: Nanofibers,Spin coating,Absorption layer,cadmium sulfide,Cadmium selenide,Hierarchical flowerlike microstructure,Ternary compound semiconductor
更新于2025-11-21 11:18:25
-
Study of (AgxCu1a??x)2ZnSn(S,Se)4 monograins synthesized by molten salt method for solar cell applications
摘要: The open circuit voltage (VOC) deficit of Cu2ZnSn(S,Se)4 (CZTSSe) kesterite solar cells is higher than that of the closely related Cu(InGa)Se2 solar cells. One of the most promising strategies to overcome the large VOC deficit of kesterite solar cells is by reducing the recombination losses through appropriate cation substitution. In fact, replacing totally or partially Zn or Cu by an element with larger covalent radius one can significantly reduce the concentration of I–II antisite defects in the bulk. In this study, an investigation of the impact of partial substitution of Cu by Ag in CZTSSe solid solution monograins is presented. A detailed photoluminescence study is conducted on Ag-incorporated CZTSSe monograins and a radiative recombination model is proposed. The composition and structural quality of the monograins in dependence of the added Ag amount are characterized using Energy Dispersive X-ray Spectroscopy and X-Ray Diffraction method, respectively. The Ag-incorporated CZTSSe monograin solar cells are characterized by temperature dependent current-voltage and electron beam induced current methods. It was found, that low Ag contents (x ≤ 0.02) in CZTSSe lead to higher solar cell device efficiencies.
关键词: Copper zinc tin sulfur selenide,Monograins,Electron beam induced current,Photoluminescence,Kesterite,Cations substituation
更新于2025-11-21 10:59:37
-
RbF post deposition treatment for narrow bandgap Cu(In,Ga)Se2 solar cells
摘要: Multi-junction solar cells are known to have a considerably increased efficiency potential over their typical single junction counterparts. In order to produce low cost and lightweight multi-junction devices, the availability of suitable narrow (<1.1 eV) bandgap bottom cells is paramount. A possible absorber for such a bottom cell is the Cu(In,Ga)Se2 (CIGS) compound semiconductor, one of the most efficient thin film materials to date. In this contribution we report on the RbF post deposition treatment of narrow bandgap CIGS absorbers grown with a single bandgap grading approach. We discuss the necessary deposition conditions and the observed improvements on solar cells performance. A certified record efficiency of 18.0 % for an absorber with 1.00 eV optoelectronic bandgap is presented and its suitability for perovskite/CIGS tandem devices is shown.
关键词: Post deposition treatment,Narrow bandgap,Tandem solar cells,Thin film solar cells,photovoltaics,Rubidium fluoride,Copper indium gallium selenide
更新于2025-11-14 17:28:48
-
In situ synthesis of ternary nickel iron selenides with high performance applied in dye-sensitized solar cells
摘要: Comparing with the binary chalcogenides, the ternary chalcogenides may achieve higher electrical conductivity and electrochemical activity due to the synergistic effect of the different metal cations. Herein, ternary nickel iron selenide (Ni0.5Fe0.5Se2) was fabricated through a facile one-pot solvothermal method with the assistance of glucose for the first time. The dye-sensitized solar cells (DSSCs) were assembled with the as-prepared Ni0.5Fe0.5Se2 as counter electrode (CE). Electrochemical measurements indicated that the Ni0.5Fe0.5Se2 possessed small electron transfer resistance at the interface between electrode and electrolyte, great electrocatalytic activity and reaction kinetics toward the reduction of triiodide. Compared with conventional Pt CE (7.24%), the DSSCs based on Ni0.5Fe0.5Se2 CE achieved a greater power conversion efficiency of 7.89%. Furthermore, this study provides a new idea and strategy with convenient method to synthesize Pt-free alternative materials.
关键词: Counter electrode,Solvothermal method,Dye-sensitized solar cells,Ternary nickel iron selenide
更新于2025-11-14 17:04:02
-
Electronic transport in MoSe <sub/>2</sub> FETs modified by latent tracks created by swift heavy ion irradiation
摘要: Unique characteristics of transition metal dichalcogenides (TMDCs) such as their tunable band gap and ultra-thin body thickness make them potential candidates for applications in optoelectronic, gas sensing and energy storage devices. In this work, 1.8 GeV Ta ions at different ion fluences ranging from 1 × 109 ions cm?2 to 6 × 1010 ions cm?2 were used to introduce amorphous defective regions, latent tracks, in MoSe2 to study the electronic transport behavior in irradiated TMDC-channel field-effect transistors (FETs). Defects in these materials induced by the swift heavy ion irradiation play a vital role in the device applications. The results show that carrier mobility decreases while resistance of the devices increases abruptly with increasing ion fluences. The impact mechanism of the latent tracks on electronic transport behavior in TMDC-channel FETs was analyzed in detail. It was assumed that the Bloch wave of electrons was strongly localized by the latent tracks induced by the SHI irradiation and the Bloch wave of electrons can be scattered by the latent tracks as well. This study helps to investigate the influence of the latent tracks on electronic transport in other 2D materials as well.
关键词: latent track,field-effect transistor,molybdenum selenide,electronic transportation,swift heavy ion irradiation
更新于2025-11-14 17:03:37
-
Luminescent Composites Based on Tetrafluoroethylene Copolymer Porous Films Produced by the Diffusion Embedding of Semiconductor Nanoparticles in a Supercritical Medium
摘要: A method for creating film composites based on a new material—a fibrous copolymer of tetrafluoroethylene and vinylidene fluoride—using the diffusion embedding of ready-made nanoparticles into a porous matrix in a supercritical (SC) carbon dioxide medium is developed. The method of cold or hot pressing of impregnated porous films was used at the final stage of creation of such composites. The peculiarities of the effect of the supercritical fluid treatment of porous copolymer films on the surface structure of pressed films are discussed. Luminescent composites with semiconductor nanoparticles of cadmium selenide and nanocrystalline silicon are obtained; their radiation covers a range of 500–1000 nm. The change in the luminescence properties of the resulting nanocomposites under the action of excitation laser radiation at 405 nm is demonstrated.
关键词: cadmium selenide,film composite,fibrous matrix,luminescent properties,diffusion embedding,nanocrystalline silicon
更新于2025-11-14 15:30:11
-
First titanium square fragment {Ti4(μ4-Se)(μ2-Se2)4} in its selenoiodide: Synthesis and structure of Ti4Se9I6
摘要: The first titanium selenoiodide Ti4Se9I6 was synthesized as black crystals by heating of Ti, Se, and I2 at 250 °C in 5:9:5 M ratio. The crystal structure of the compound was solved by X-ray single-crystal diffractometry (sp. gr. P-1, a = 7.9652(10), b = 10.3390(15), c = 15.692(2) ?; α = 79.116(7)°, β = 75.861(7)°, γ = 71.437(7)°; Z = 2) with final R1 = 0.0397. The structure includes square {Ti4(μ4-Se)(μ2-Se2)4} fragment coordinated by four terminal and four bridging μ2-I atoms. Ti4+ has d0 configuration, and stability of the structure fragments is provided by metal to ligand bonding which was confirmed by DFT calculations.
关键词: Metal chalcohalides,Titanium,Square complex,Synthesis,Selenide,X-ray crystal structure,Chain structure,DFT calculations,Iodide
更新于2025-11-14 15:14:40
-
GaxSe10-x based solar cells: Some alternatives for the improvement in their performance parameters
摘要: We report on strategies that improve Se-derivative based solar cells performance. With this aim, a compact thin film based on ZnO nanoparticles is deposited onto fluorine doped tin oxide (FTO) as an electron-transport layer, in thermally evaporated GaxSe10-x based solar cells. ZnO nanoparticles films are synthesized by sol-gel process whereas GaxSe10-x material is obtained by mechanical alloying. Using current-voltage measurements, impedance spectroscopy, and capacitance-voltage profiling, device characteristics and performance limiting factors are revealed and discussed. Particularly, the use of ZnO nanoparticles results in improved device performance as well as long-term stability. In comparison to Se-only devices with the structure FTO/Se/Au (power conversion efficiency of 0.98%), under 100 mW/cm2 AM 1.5 G illumination the devices achieved a power conversion efficiency of 2.7% with the structure FTO/ZnO/GaSe9/Au (open circuit voltage of 0.71 V, short-circuit current of 7.9 mA/cm2). Hence, an increase of around 175% in the power conversion efficiency is obtained in comparison to Se-only devices. In addition, the effect of others parameters, like thickness of the active layer as well as the gallium contents in the alloy, are discussed.
关键词: Gallium selenide,Solar cells,ZnO nanoparticles,Electric modulus spectroscopy
更新于2025-10-22 19:40:53
-
Electrodeposition of lead selenide films from ionic liquids based on choline chloride
摘要: The paper presents some experimental results regarding the electrodeposition of PbSe thin films at 70 oC from two choline chloride (ChCl) based ionic liquids containing PbCl2 and SeO2 as precursors in choline chloride-ethylene glycol (ILEG) and choline chloride-urea (IL) eutectic mixtures. In this article we will detail our investigation of cathodic processes involved during the electrodeposition of binary semiconductor compound, PbSe as well as of singular Pb and Se elements. The cathodic branches of the recorded cyclic voltammograms in the cases of ionic liquids containing both Pb2+ + Se4+ show successively the Se underpotential deposition, Se bulk deposition and Pb deposition followed by a formation of PbSe semiconductor compound. However, at the most negative potentials the Se content of final layers decreases by a partial electrochemical dissolution of Se which reduces to Se2- soluble species. PbSe thin films have been electrodeposited on copper or nickel substrates under potentiostatic control at 70 oC for 0.5-4 h. The adherent and uniform deposits were characterized by SEM-EDX and XRD techniques. SEM images have shown adherent and grey deposits with uniform morphology and cubic PbSe crystals. A stoichiometry of around Pb1.1Se was indicated by EDX elemental analysis. XRD confirmed the formation of PbSe compound, showing a nanocrystalline structure, with crystallites average sizes in the range of 10-35 nm.
关键词: DES ionic liquids,electrodeposition,selenide semiconductors,Lead selenide,cyclic voltammetry
更新于2025-09-23 15:23:52