- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Stable nano-silver colloid production via Laser Ablation Synthesis in Solution (LASiS) under laminar recirculatory flow
摘要: As nanomaterials find applications in an increasingly diverse range of fields such as wastewater treatment, biotechnology and flexible electronics, the demand for nanomaterials with specific properties has increased. This increase is coupled with an increasing emphasis on nanomaterials with highly specific properties for specialised applications. Industrially, nanomaterials are produced via wet-chemical techniques which employ the use of solvents and reagents which are environmentally harmful. As we move forward with the use of nanomaterials, the ability to produce nanomaterials in a sustainable manner has become a topic of great significance. Towards this end, Laser Ablation Synthesis in Solution (LASiS) is a physical production technique capable of producing tailored nanomaterial colloids in a sustainable manner. These colloids are produced by ablating a solid target immersed in a solvent using a laser. Typically, LASiS is conducted in a batch process and in small volumes limiting commercial viability. To overcome this, there has been a move towards the use of continuous production via LASiS using flow systems. This allows an increase in nanomaterial yield, resulting in colloid concentrations approaching those of commercial colloids. This work investigates a new production technique incorporating a laminar recirculatory flow system to produce stable high concentration nano-silver colloids.
关键词: silver,Nanoparticle,laser ablation synthesis in solution,size-quenching
更新于2025-09-23 15:19:57
-
Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications
摘要: Organic heterostructures (OHSs) consist of organic micro/nanocrystals are of essential importance for the construction of integrated optoelectronics in the future. However, the scarcity of materials and the problem of phase separation still hinder the fine synthesis of OHSs. Herein, based on the α phase one-dimensional (1D) microrods and the β phase 2D microplates of one organic compound 3,3′-((1E,1′E)-anthracene-9,10-diylbis(ethane-2,1-diyl))dibenzonitril (m-B2BCB), we facilely synthesized the OHSs composed of these two polymorph phases, whose growth mechanism is attributed to the low lattice mismatch rate of 5.8% between (001) plane of α phase (trunk) and (010) crystal plane of β phase (branch). Significantly, the multiport in/output channels can be achieved in the OHSs, which demonstrates the structure-dependent optical signals with the different output channels in the OHSs. Therefore, our experiment exhibits the great prospect of polymorphism in OHSs, which could provide further applications on multifunctional organic integrated photonics circuits.
关键词: heterostructure,integrated optoelectronics,fine synthesis,lattice mismatch,polymorph
更新于2025-09-23 15:19:57
-
Ultrathin Plasmonic Tungsten Oxide Quantum Wells with Controllable Free Carrier Densities
摘要: We report the colloidal synthesis of ~3 tungsten-oxygen (W-O) layer thick (~1 nm), two-dimensional (2D) WO3-x nanoplatelets (NPLs) (x ~ 0.55 — 1.03), which display tunable near-infrared localized surface plasmon resonances (LSPR) spectra and high free electron density (Ne) that arises predominantly from their large shape factor. Importantly, the W to O composition ratios inferred from their LSPR measurements show much higher percentage of oxygen vacancies than those determined by X-ray diffraction analysis, suggesting that the aspect ratio of ultrathin WO3-x NPLs is the key to producing an unprecedentedly large Ne, although synthesis temperature is also an independent factor. We find that NPL formation is kinetically controlled, whereas thermodynamic parameter manipulation leads to Ne as high as 4.13 X 1022 cm-3, which is close to that of plasmonic noble metals, and thus our oxide-based nanostructures can be considered as quasi-metallic. The unique structural properties of 2D nanomaterials along with the high Ne of WO3-x NPLs provide an attractive alternative to plasmonic noble metal nanostructures for energy conversions.
关键词: Ultrathin Plasmonic Tungsten Oxide,Quantum Wells,Colloidal Synthesis,Localized Surface Plasmon Resonances,Free Carrier Densities
更新于2025-09-23 15:19:57
-
Metallic Nanomaterials (Part A) || 5. Synthesis and characterization of size-controlled atomically precise gold clusters
摘要: In this article, synthetic strategies and characterization methodologies of atomically precise gold clusters have been summarized. The typical and effective synthetic strategies including a systematic “size-focusing” methodology has been developed for attaining atomically precise gold clusters with size control. Another universal synthetic methodology is ligand exchange-induced size/structure transformation (LEIST) based on from one stable size to another. These two methodologies have largely expanded the “universe” of atomically precise gold clusters. Elite of typical synthetic case studies of ligand protected gold clusters are presented. Important characterization techniques of these atomically precise gold clusters also are included. The identification and characterization of gold clusters have been achieved in terms of nuclearity (size), molecular formulation, and geometrical structures by the combination of these techniques. The determination of gold cluster structure based on single crystals is of paramount importance in understanding the relationship of structure–property. The criterion and selection of these typical gold clusters are all “strictly” atomically precise that all have been determined ubiquitously by single crystal diffraction. These related crystallographic data are retrieved from Cambridge Crystallographic Data Centre (CCDC) up to 30th November 2017. Meanwhile, the cutting edge and other important characterization methodologies including electron diffraction (ED), extended X-ray absorption fine structure (EXFAS), and synchrotron sources are briefly reviewed. The new techniques hold the promise of pushing the limits of crystallization of gold clusters. This article is not just an exhaustive and up to date review, generally summarized synthetic strategies, but also a practical guide regarding gold cluster synthesis. We called it a “Cookbook” of ligand protected gold clusters, including synthetic recipes and characterization details.
关键词: alkyne,ligand exchange-induced size/structure transformation,phosphine,“size-focusing” methodology,size-controlled synthesis,thiolate,gold cluster
更新于2025-09-23 15:19:57
-
Thermally Durable Nonfullerene Acceptor with Nonplanar Conjugated Backbone for Higha??Performance Organic Solar Cells
摘要: A nonfullerene acceptor (NFA) with acceptor–donor–acceptor (A–D–A) architecture, i-IEICO-2F, based on 4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene as an electron-donating core and 2-(6-fluoro-2,3-dihydro-3-oxo-1H-inden-1-ylidene)-propanedinitrile as electron-withdrawing end groups, is designed and synthesized. i-IEICO-2F has a twist structure in the main conjugated chain, which causes blueshifted absorption and leads to harmonious absorption with a high bandgap donor. The bandgap of i-IEICO-2F compliments the bandgap of suitable wide bandgap donor polymers such as J52, leading to complete light absorption throughout the visible spectrum. Devices based on i-IEICO-2F exhibit optimized photovoltaic performance including an open-circuit voltage of 0.93 V, a short-circuit current density of 16.61 mA cm?2, and a fill factor of 73%, and result in a power conversion efficiency (PCE) of 11.28%. The i-IEICO-2F-based devices reach PCEs of >11% without using any additives or post-treatments. Devices are found to be thermally stable and maintain 44% of their initial PCE after 184.5 h of continuous thermal annealing (TA) treatment at 150 °C. Based on UV, atomic force microscopy (AFM), and grazing incidence wide angle X-ray scattering (GIWAXS) results, i-IEICO-2F devices show almost identical morphology and molecular orientation throughout the TA treatment and excellent stability compared to other IEICO derivatives.
关键词: twist structure,solar cells,nonfullerene acceptors,synthesis,fluorine
更新于2025-09-23 15:19:57
-
Resistive-type UVa??visible photodetector based on CdS NWs /ZnO nanowalls heterostructure fabricated using in-situ synthesis method
摘要: Here, the resistivity-type UV-visible photodetectors are designed and fabricated by implementation of direct integration between CdS nanowires(NWs) and vertical standing ZnO nanowalls with a facile in-situ synthesis method, in which ZnO nanowalls are employed as good support for anchoring well-dispersed CdS NWs to overcome its random distribution. The photodetectors based on CdS/ZnO heterojunctions demonstrate higher photo response activity than the prinstine CdS NWs and pure ZnO nanowalls photodetectors . The high performance could be attributed to the charge carrier separation efficiency and fast charge transportation facilitated by effective and close contact between CdS NWs and ZnO nanowalls. The results indicate that the ZnO/CdS heterojunctions fabricated by in-situ synthesis method provide a facile approach for nanoscale optoelectronic device.
关键词: photodetector,in-situ synthesis,CdS NWs,ZnO nanowalls
更新于2025-09-23 15:19:57
-
Facile Synthesis of Noncytotoxic PEGylated Dendrimer Encapsulated Silver Sulfide Quantum Dots for NIR-II Biological Imaging
摘要: Near-Infrared-II (NIR-II, 1000-1700 nm) bioimaging features high penetration depth and high spatio-temporal resolution compared to traditional fluorescence imaging, but the key is to develop stable and biocompatible NIR-II fluorophores suitable for in vivo applications. Silver sulfide quantum dots (Ag2S QDs) have been demonstrated excellent for in vivo NIR-II imaging with unique optical properties and decent biocompatibility, but they often require complex post modifications for in vivo applications. Herein we demonstrate a facile one-pot strategy to synthesize the PEGylated dendrimer-encapsulated Ag2S QDs useful for in vivo NIR-II imaging. Silver ions were first loaded into the core of acylthiourea-functionalized dendrimer (PEG-PATU) through the coordination between silver ions and acylthiourea groups, followed by the addition of sodium sulfide to form Ag2S QDs in situ. The resulting PEG-PATU Ag2S QDs hold excellent NIR-II fluorescence signal, and thus could be executed for high efficiency labelling and tracking of A549 cancer cells mobility in vivo and real time visualization of vast circulatory network of a mouse.
关键词: in vivo imaging,PEGylated dendrimer,one-pot synthesis,Ag2S QDs,NIR-II bioimaging
更新于2025-09-23 15:19:57
-
Fluorescent-Nitrogen-Doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury(II) Ion Sensing, and Live Cell Imaging
摘要: In this study, we report a green and economical hydrothermal synthesis of fluorescent-nitrogen-doped carbon quantum dots (NCQDs) using citrus lemon as a carbon source. The prepared NCQDs possess high water solubility, high ionic stability, resistance to photobleaching, and bright blue color under ultraviolet radiation with a high quantum yield (~31%). High-resolution transmission electron microscopy (HRTEM) results show that the prepared NCQDs have a narrow size distribution (1?6 nm) with an average particle size of 3 nm. The mercury ion (Hg2+) sensing efficiency of the NCQDs was studied, and the result indicated that the material has high sensitivity, high precision, and good selectivity for Hg2+. The limit of detection (LOD) is 5.3 nM and the limit of quantification (LOQ) is 18.3 nM at a 99% confidence level. The cytotoxicity was evaluated using MCF7 cells, and the cell viabilities were determined to be greater than 88% upon the addition of NCQDs over a wide concentration range from 0 to 2 mg/mL. Based on the low cytotoxicity, good biocompatibility, and other revealed interesting merits, we also applied the prepared NCQDs as an effective fluorescent probe for multicolor live cell imaging.
关键词: mercury(II) ion sensing,citrus lemon juice,green synthesis,live cell imaging,fluorescent-nitrogen-doped carbon quantum dots
更新于2025-09-23 15:19:57
-
Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry
摘要: Next-generation optoelectronic applications centered in the near-infrared (NIR) and short-wave infrared (SWIR) wavelength regimes require high-quality materials. Among these materials, colloidal InAs quantum dots (QDs) stand out as an infrared-active candidate material for biological imaging, lighting, and sensing applications. Despite significant development of their optical properties, the synthesis of InAs QDs still routinely relies on hazardous, commercially unavailable precursors. Herein, we describe a straightforward single hot injection procedure revolving around In(I)Cl as the key precursor. Acting as a simultaneous reducing agent and In source, In(I)Cl smoothly reacts with a tris(amino)arsenic precursor to yield colloidal InAs quantitatively and at gram scale. Tuning the reaction temperature produces InAs cores with a first excitonic absorption feature in the range of 700?1400 nm. A dynamic disproportionation equilibrium between In(I), In metal, and In(III) opens up additional flexibility in precursor selection. CdSe shell growth on the produced cores enhances their optical properties, furnishing particles with center emission wavelengths between 1000 and 1500 nm and narrow photoluminescence full-width at half-maximum (FWHM) of about 120 meV throughout. The simplicity, scalability, and tunability of the disclosed precursor platform are anticipated to inspire further research on In-based colloidal QDs.
关键词: colloidal synthesis,InAs quantum dots,short-wave infrared,optoelectronic applications,near-infrared
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Beijing, China (2019.11.21-2019.11.23)] 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Accurate Short-term Forecasting for Photovoltaic Power Method Using RBM Combined LSTM-RNN Structure with Weather Factors Quantification
摘要: Low-density parity-check (LDPC) block codes are popular forward error correction schemes due to their capacity-approaching characteristics. However, the realization of LDPC decoders that meet both low latency and high throughput is not a trivial challenge. Usually, this has been solved with the ASIC and FPGA technology that enables meeting the decoder design constraints. But the rise of parallel architectures, such as graphics processing units, and the scaling of CPU streaming extensions has shown that multicore and many-core technology can provide a flexible alternative to the development of dedicated LDPC decoders for the compute-intensive prototyping phase of the design of new codes. Under this light, this paper surveys the most relevant publications made in the past decade to programmable LDPC decoders. It looks at the advantages and disadvantages of parallel architectures and data-parallel programming models, and assesses how the design space exploration is pursued regarding key characteristics of the underlying code and decoding algorithm features. This paper concludes with a set of open problems in the field of communication systems on parallel programmable and reconfigurable architectures.
关键词: LDPC codes,high-level synthesis,CPU,parallel computing,LDPC decoders,reconfigurable computing,GPU
更新于2025-09-23 15:19:57