- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Controlling porosity and ultraviolet photoresponse of crystallographically oriented ZnO nanostructures grown by pulsed laser deposition
摘要: We have synthesized a series of porous nanostructures of c-axis oriented wurtzite ZnO using glancing angle pulsed laser deposition. During deposition, the oxygen partial pressure (PO2) was varied to study the effects on growth, porosity and optical properties. With varied PO2 the growth of nanostructure changes gradually without losing its crystallographic orientation. The variation in PO2 causes systematic change in porosity of these nanostructures, which strongly influences ultraviolet photoresponse. These results show that the parameters such as surface morphology, growth and porosity as well as the optoelectronic properties can be controlled by variation in PO2 without compromising the crystalline structure.
关键词: Crystalline nanostructures,Photoresponse,Porosity,Ultraviolet,Glancing angle pulsed laser deposition
更新于2025-11-19 16:56:42
-
Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process
摘要: The efficiency of the ultraviolet (UV)/chlorine process strongly depends on UV wavelength because chlorine photolysis and its subsequent radical formation are highly wavelength-dependent. This study compared the degradation of humic acid (HA) during the UV/chlorine process by low pressure mercury lamp (LPUV, 254 nm) and ultraviolet light-emitting diode (UV-LED, 275 and 310 nm). The results indicated that HA degradation followed the pseudo-first-order kinetics, and the fluence-based degradation rate constants (kobs) were significantly affected by UV wavelength and solution pH. HA degradation decreased greatly with increasing solution pH during the UV/chlorine process at 254 nm, while the opposite trend was observed at 275 and 310 nm. In the meantime, kobs decreased in the order of 275 nm > 254 nm > 310 nm at pH > 7.0. The changes of chlorine molar absorption coefficients at different UV wavelengths resulted in the variation of chlorine photodecay rates (kobs, chlorine), and the synergistic effects of kobs, chlorine and chlorine quantum yields (Φchlorine) affected HA reduction. The formation of disinfection by-products (DBPs) during the UV/chlorine process was also evaluated. A significant suppression on DBP formation and DBP-associated calculated theoretical cytotoxicity were observed at 275 nm high UV fluence and alkaline pHs. These findings in this study demonstrate that UV wavelength at 275 nm is more suitable for HA degradation by the UV/chlorine advanced oxidation process in practical applications.
关键词: Disinfection by-products,Ultraviolet light-emitting diode (UV-LED),UV/chlorine,Humic acid,Toxicity,UV wavelength
更新于2025-11-19 16:46:39
-
Deep-ultraviolet plasmon resonances in Al-Al <sub/>2</sub> O <sub/>3</sub> @C core-shell nanoparticles prepared via laser ablation in liquid
摘要: We developed a convenient, facile, low cost and ‘‘green” method to synthesize nanoparticles(NPs) with deep-ultraviolet localized surface plasmon resonances (LSPR) based on laser ablation of aluminum target in liquid. The nanoparticles had an Al-Al2O3@C core-shell structure, and the LSPR peak ranged from 240nm to 250nm with the increasing of laser radiation time. It is found that the LSPR peak of the NPs is related to the presence of Al2O3 based on experimental characterization and theoretical simulation. The carbon shell can reduce the oxidation of Al nanoparticles and enhance the stability, which is significant important to achieve the deep-ultraviolet LSPR. Moreover, we demonstrated the enhancement of the blue fluorescence intensity from CsPbBr3-xClx by the Al-Al2O3@C NPs, due to the stronger excitations for CsPbBr3-xClx by the enhancement of localized electromagnetic field from LSPR.
关键词: PL enhancement,plasmonics,localized surface plasmon resonance,Al nanoparticle,deep-ultraviolet
更新于2025-11-14 15:32:45
-
Body Color and Morphological Correlates of Fitness in Eastern Fence Lizards (Sceloporus undulatus): A Spectrophotometric Approach
摘要: Many lizards use colorful badges in displays with conspecifics during courtship and aggressive interactions. In Eastern Fence Lizards (Sceloporus undulatus), males and females reveal sexually dimorphic ventral abdominal coloration during social interactions and use these features to signal sex and perhaps other characteristics. However, the extent to which ventral badges or other chromatic features of males and females signal quality remains unresolved in this species. Additionally, adult S. undulatus exhibit temperature-dependent color change of their abdominal badges, a potential confounding variable in studies of the function of these badges. Here, we examined the relationship between spectral variables of ventral and dorsal skin color and morphometric traits linked to fitness in adult male and female S. undulatus under standardized temperature conditions. For males, ventral patch hue tended to decrease (i.e., was blue-shifted) as body size increased, whereas dorsal hue was unrelated to male size. In contrast, there was no relationship between ventral hue and body size in females, and dorsal hue increased (i.e., was red-shifted) with body size. In males, lower ultraviolet (UV) chroma and greater blue chroma of ventral abdominal badges predicted increasing body size. In females, UV chroma of the ventral abdomen was inversely related to body size and better body condition, whereas blue chroma was inversely related to body condition only. Dorsal UV chroma decreased with increasing body size in both males and females, but brightness was not a significant predictor of any morphometric trait in either sex. Overall, these results indicate that both blue and UV reflectance of ventral and dorsal abdominal skin are indices of size and thus age, and could therefore serve as indices of signaler quality in this species.
关键词: Sexual dimorphism,Morphology,Phrynosomatidae,Spiny lizards,Spectrophotometry,Ultraviolet
更新于2025-11-14 15:30:11
-
BaB2O3F2: A New Barium Fluorooxoborate with a Unique (_"∞" ^"2" )"[B2O3F]‐" Layer and Short Cutoff Edge
摘要: The substitution of oxygen by fluorine in borate group offers a brand new materials platform from which intriguing structure and functionality may arise. Here, we report a new fluorooxoborate, BaB2O3F2, synthesized by introducing the F atoms into the BaO-B2O3 system. BaB2O3F2 exhibits a unique oxyfluoride layer and a deep-ultraviolet cutoff edge below 180 nm. The effect of the introduction of F atoms on the structure and optical property has been investigated which should be useful to further expand the borate chemistry and materials.
关键词: deep ultraviolet,synthesis,fluorooxoborate,Aurivillius-type
更新于2025-11-14 15:13:28
-
Composition and Strain Evolution of Undoped Si <sub/>0.8</sub> Ge <sub/>0.2</sub> Layers Submitted to UV-Nanosecond Laser Annealing
摘要: Ultraviolet Nanosecond Laser Annealing (UV-NLA, XeCl laser, 308 nm, 145 ns) was performed on 30 nm-thick Si0.8Ge0.2 epitaxial layers. The various regimes encountered after single pulse UV-NLA are described and discussed, including submelt, SiGe layer partial and total melt, as well as melt beyond the SiGe epi-layer. Energy densities around 2.00 J/cm2 and above led to the formation of pseudomorphic layers with strong Ge redistribution. Starting from uniform Si0.8Ge0.2 layers, Ge segregation towards the surface resulted in the formation of a Ge-rich surface layer with up to 55% Ge for 2.00 J/cm2. Such pseudomorphic SiGe layers with graded composition and a Ge-rich surface layer may find some promising applications such as contact resistance lowering in doped layers.
关键词: SiGe,pseudomorphic,contact resistance,Ge redistribution,Ultraviolet Nanosecond Laser Annealing
更新于2025-11-14 14:32:36
-
Single-Crystal ZnO/AlN Core/Shell Nanowires for Ultraviolet Emission and Dual-Color Ultraviolet Photodetection
摘要: Core–shell nanostructures can combine the advantages of different functional materials to realize property tunability and enhance optical and optoelectrical performance. Here, vertically aligned ZnO/AlN core/shell nanowires have been facilely fabricated by sputtering AlN layer onto the ZnO nanowires grown by vapor phase transport. The morphological and structural characterization reveals that single-crystal AlN shell layer with thickness of ≈15 nm is coated uniformly on the single-crystal ZnO nanowire with diameters of ≈330 nm. The core/shell nanowire exhibits 24 times enhancement of ultraviolet emission and quenching of the deep level emission from ZnO. Moreover, under ultraviolet irradiation (325 nm), the photodetector based on the core/shell nanowire displays higher photoresponsivity (from 3.8 × 103 to 2.05 × 104 A W?1), faster response speed (from 397 to 28 ms), and higher I325nm/Idark ratio (from 453 to 1.1 × 104) than that bare ZnO nanowire device. Under the vacuum ultraviolet (193 nm) illumination, the I193nm/Idark ratio and photoresponsivity are 300 and 381 A W?1, respectively. In one word, this paper employs a facile and general technique to solve a challenging fabrication issue, and obtains perfect crystal core/shell structure with high performance for ultraviolet emission and detection.
关键词: single-crystal core/shell,AlN,ZnO nanowires,ultraviolet emission,dual-color ultraviolet photodetection
更新于2025-09-23 15:23:52
-
Modification of TiO <sub/>2</sub> (1?1?0)/organic hole transport layer interface energy levels by a dipolar perylene derivative
摘要: Our photoemission study reveals that the work function of TiO2(1 1 0) decreases by up to 1.5 eV upon deposition of 9-(bis-(p-(tert-octyl)phenyl)amino)-perylene-3,4-dicarboxylic anhydride (BOPA-PDCA). This effect is attributed to a chemical reaction of TiO2(1 1 0) and the molecular anhydride group, as well as the molecular dipole. Analysis of the film thickness dependent photoemission and metastable atom electron spectroscopy data reveals that for low coverage the perylene backbone of BOPA-PDCA is almost parallel to the substrate surface and higher coverage leads to an orientational transition to essentially upright standing molecules. Comparing the energy-level alignment between TiO2(1 1 0) and the hole transport materials N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) without and with the BOPA-PDCA interlayer, we find that the perylene derivative has a positive impact on the level alignment for dye-sensitized solar cells with high open-circuit voltages.
关键词: solid state dye-sensitized solar cell,titanium dioxide,energy-level alignment,ultraviolet photoelectron spectroscopy,metastable atom electron spectroscopy,perylene
更新于2025-09-23 15:23:52
-
Straw Degradation Behaviors under Different Conditions of Relative Air Humidity and Ultraviolet-A Irradiation
摘要: In this study, straw was degraded continuously for 150 days under one of three levels of relative air humidity (RH) (90%, 60%, or 30%) to estimate the effect of humidity on straw biodegradation. Moreover, straw was treated with ultraviolet (UV)-A irradiation + 90% RH for 180 days to evaluate the interaction between photodegradation and biodegradation. The effects of 30% and 60% RH on straw degradation was inconspicuous. Straw mass losses at 90% RH and UV-A + 90% RH were 18.5% and 39.1%, respectively. BIOLOG analysis showed that filamentous fungi played a major role in straw biodegradation. Thermogravimetric analysis showed that treatment with UV-A + 90% RH tended to increase the maximum pyrolysis rate and decreased the initial pyrolysis temperature. Compared with 90% RH, infrared spectra analysis showed that functional groups of UV-A + 90% RH treatment, e.g., –CH, –C=O, and the benzene ring structure, clearly decreased. Straw-degrading bacteria were observed by scanning electron microscopy at the beginning and end of UV-A + 90% RH treatment. Results highlight the role of humidity in the degree of straw biodegradation by filamentous fungi. Straw degradation is accelerated by the combined action of photodegradation and biodegradation under high UV-A irradiation and high humidity.
关键词: Relative air humidity,Biodegradation,TGA,Photodegradation,Ultraviolet-A irradiation,BIOLOG,SEM,ATR-FTIR
更新于2025-09-23 15:23:52
-
Attosecond Pulse Shaping by Multilayer Mirrors
摘要: The emerging research field of attosecond science allows for the temporal investigation of one of the fastest dynamics in nature: electron dynamics in matter. These dynamics are responsible for chemical and biological processes, and the ability to understand and control them opens a new door of fundamental science, with the possibility to influence all lives if medical issues can thereby be addressed. Multilayer optics are key elements in attosecond experiments; they are used to tailor attosecond pulses with well-defined characteristics to facilitate detailed and accurate insight into processes, e.g., photoemission, Auger decay, or (core-) excitons. Based on the investigations and research efforts from the past several years, multilayer mirrors today are routinely used optical elements in attosecond beamlines. As a consequence, the generation of ultrashort pulses, combined with their dispersion control, has proceeded from the femtosecond range in the visible/infrared spectra to the attosecond range, covering the extreme ultraviolet and soft X-ray photon range up to the water window. This article reviews our work on multilayer optics over the past several years, as well as the impact from other research groups, to reflect on the scientific background of their nowadays routine use in attosecond physics.
关键词: attosecond,X-ray,extreme ultraviolet (EUV),soft X-ray,multilayer,mirror
更新于2025-09-23 15:23:52