修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Tailored nanocomposite energy harvesters with high piezoelectric voltage coefficient through controlled nanowire dispersion

    摘要: Composites composed of piezoelectric nanomaterials dispersed in a flexible polymer have emerged as promising materials for highly durable and flexible energy harvesters and sensors. Although piezoelectric materials in their bulk form have a high electromechanical coupling coefficient and can efficiently convert mechanical energy to electrical energy, the ceramic form has low fracture toughness and thus they are limited in certain applications due to difficulty in machining and conforming to curved surfaces. Recently, additive manufacturing processes such as direct write, have been developed to incorporate piezoelectric nanowires into a polymer matrix with controlled alignment to realize printed piezoelectrics. Given the multiphase structure of a nanocomposite, it is possible to control the material structure such that the piezoelectric coupling and dielectric properties can be varied independently. In this paper, experimentally validated finite element (FE) and micromechanics models are developed for calculation and optimization of the piezoelectric voltage coefficient, g31, of a nanocomposite. It is shown that by using high aspect ratio nanowires with controlled alignment, the piezoelectric coupling can be disproportionately increased with respect to the dielectric constant which yields a g31 coefficient that can be enhanced more than seven times compared to the bulk piezoelectric material. Moreover, it is demonstrated that the use of high aspect ratio nanowires in the energy harvester resulted in significant improvement on the output electrical power of an energy harvester.

    关键词: Energy harvesting,Nanowires,Finite element modeling (FEM),Voltage coefficient,Piezoelectric,The Mori-Tanaka method,Direct write,Nanocomposite

    更新于2025-11-14 17:28:48

  • Significance of Micro and Nano PZT Particles on Dielectric and Piezoelectric Properties of PZT-PVDF Composites

    摘要: PZT-PVDF composites were prepared using different particle size of PZT and a hot press apparatus has been used for making samples. The structural and compositional analysis of the composite sample was done by using Scanning Electron Microscope (SEM) and Energy Dispersive Analysis of X-rays (EDAX) respectively. The grain size of the ball milled PZT powder was analyzed using powder X-Ray Diffraction (XRD). The samples were poled at a fixed temperature for about an hour under different poling fields. The dielectric constant (εr) and the piezoelectric properties like piezoelectric strain coefficient (d33) and voltage coefficient (g33) of composite have been analyzed.

    关键词: composite,ferroelectric materials,dielectric constant,strain coefficient,voltage coefficient,particle size,lead zirconate titanate

    更新于2025-09-23 15:22:29