修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Formation of 45° Silicon (110) Surface Using Triton X- <i>n</i> Surfactants in Potassium Hydroxide for Infrared Applications

    摘要: Silicon (Si) micromirrors are an integral feature for many micro-optomechanical systems (MOEMS). Such mirrors are generally wet etched in alkaline solution at elevated temperature. For 90? beam steering applications, 45? slanted Si (110) plane is the prime choice fabricated with the incorporation of tensioactive surfactants. Here, Triton-Si and Triton-hydroxide (OH?)/H2O interaction using varying hydrophilic chain length Triton (X-45, X-100 and X-405) were investigated. The surfactant concentration was varied from 0 to 1000 ppm in potassium hydroxide (KOH). Triton molecules were shown to adsorb preferentially on (110) than on (100) surface. Longer chain length Triton hampered OH? access to Si surface resulting in slower etch rate. In contrast, contact angle measurement suggested that shorter Triton interfaced better with Si surface. Later, Si wafers etched in Triton 10 ppm – KOH were examined. The measured output for (110)X-45, (110)X-100, (110)X-405 and polished Si wafer reference (Rq < 5?) mirrors were 0.58, 0.76, 0.72 and 1.25 mW, respectively. Subsequently, Si-SiO2 thin film in [HLHL]2-substrate configuration was fabricated. Broadband micromirror for use in 3.0–5.5 μm spectrum range was experimentally realized with reflected efficiency of 73%.

    关键词: wet etching,optical measurement,Silicon micromirrors,Triton X-n,surface roughness,potassium hydroxide,surfactants

    更新于2025-09-23 15:23:52

  • [IEEE 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) - Singapore, Singapore (2018.4.22-2018.4.26)] 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) - Optical Coupling of 3D Silicon Micromirrors

    摘要: Free space optical coupling is considered the important feature which affects on the performance of the optical systems. Where coupling elements such as lenses and mirrors are aided in overcome the divergence of the Gaussian beams and to achieve phase matching. Here we concentrate on the studying of the free space coupling of 3D (spherical) mirror based on the propagation of a Gaussian beam. The design and fabrication of 3D mirror in the Optical microelectromechanical systems (MEMS) are studied. The coupling efficiency is a very important factor in the design of any MEMS circuit. High coupling efficiency is obtained by assembling optical parts which increase the integration effort. In this work, we report a high coupling efficiency, monolithically integrated 3D silicon micromirror that is capable of influencing on the Gaussian beams which propagate in the plane of the silicon substrate. A micromachining method is presented for fabricating the 3D micromirror.

    关键词: micromachining,3D silicon micromirrors,optical coupling,MEMS,Gaussian beams

    更新于2025-09-23 15:19:57