- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interaction of hydrogen with hafnium dioxide grown on silicon dioxide by the atomic layer deposition technique
摘要: The electrical and structural properties of thin hafnia films grown by the atomic layer deposition technique were investigated before and after different annealing steps as well as after a dc H plasma treatment. By using the nuclear reaction analysis, the authors demonstrated that high concentrations of hydrogen (about 1–2 at. %) could be observed even in as-grown hafnia layers. An additional hydrogenation of the samples with atomic H led to a significant shift of the flatband voltage. This shift could be explained by the introduction of positively charged H-related defects which were found to be stable at room temperature. By comparing the experimental findings with the theory and the data from muon spin spectroscopy, they tentatively ascribed these defects to interstitial H in HfO2.
关键词: atomic layer deposition,structural properties,hydrogen,electrical properties,hafnium dioxide
更新于2025-09-04 15:30:14
-
Thermal atomic layer deposition of Sn metal using SnCl <sub/>4</sub> and a vapor phase silyl dihydropyrazine reducing agent
摘要: This work explores a novel, thermal atomic layer deposition (ALD) process to deposit tin metal at a low temperature. The authors employ 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (DHP) to reduce SnCl4 on silicon substrates. The authors explored a range of temperatures between 130 and 210 °C to determine the ALD window, which was found to be 170–210 °C. The authors show that this process yields a growth rate of ~0.3 ? per cycle at 190 °C. Furthermore, X-ray photoelectron spectroscopy results showed that the ?lm impurities are reduced for depositions within the ALD window. The reaction mechanism was explored using in situ mass spectrometry and in situ quartz crystal microbalance (QCM). Within the ALD temperature window, the QCM results showed a saturated mass gain during the SnCl4 exposure and a net mass loss during the DHP dose. Consistent with the QCM results, in situ mass spectroscopy data indicate that the DHP exposure step removes surface Cl via formation of volatile trimethylsilyl chloride and pyrazine by-products, effectively reducing the oxidation state of surface-bound Sn. This work is the ?rst thermal Sn metal ALD process to be reported in literature and the oxidation/reduction chemistry presented here may be applied to other metal precursors, increasing the applicability of metal ALD use in industry.
关键词: quartz crystal microbalance,X-ray photoelectron spectroscopy,ALD window,SnCl4,mass spectrometry,tin metal,thermal atomic layer deposition,DHP
更新于2025-09-04 15:30:14
-
Reference Module in Chemistry, Molecular Sciences and Chemical Engineering || Interface Potentials, Intrinsic Defects, and Passivation Mechanisms in Al 2 O 3 , HfO 2 , and TiO 2 Ultrathin Films
摘要: For the tailoring of interface properties in terms of providing active centers for surface reactions, surface passivation, or the adjustment of surface potentials, ultrathin metal oxide surface coatings are of importance. In this contribution we report about the applicability of Al2O3, HfO2, and TiO2 ultrathin films prepared by atomic layer deposition (ALD) regarding the aforementioned items. We have selected these metal oxides because of their wide field of applications. HfO2 is the main competitor for the replacement of SiO2 in microelectronic devices.1,2 Al2O3 ALD films are applied for passivation schemes in silicon-based3 and more recently perovskite solar cells.4 TiO2 is, for example, attractive for resistive switching devices5 and as active or passive layer in energy conversion applications such as solar cells6 or water splitting devices,7,8 to name a few. Here, the use of the ALD technique brings advantages such as: (i) precise thickness control to optimize the trade-off between light absorption (in a range of depletion layer) and charge separation (thinner thickness),7 (ii) high conformity to coat complex structures accompanied by increased light absorption,7 and (iii) capability to control the band-gap narrowing by doping with W7 or N9,10 and hence allow visible light absorption.
关键词: Al2O3,HfO2,TiO2,ultrathin films,interface potentials,intrinsic defects,passivation mechanisms,atomic layer deposition
更新于2025-09-04 15:30:14
-
Photoelectrochemically Active N‐Adsorbing Ultrathin TiO <sub/>2</sub> Layers for Water‐Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment
摘要: Highly performing photocatalytic surfaces are nowadays highly desirable in energy fields, mainly due to their applicability as photo water-splitting electrodes. One of the current challenges in this field is the production of highly controllable and efficient photoactive surfaces on many substrates. Atomic layer deposition has allowed the deposition of photoactive TiO2 layers over wide range of materials and surfaces. However, nitrogen doping of the growing layers, a highly effective way of controlling the absorption edges of photoactive surfaced, is still a challenging task. Here, the preparation of hierarchical nanostructured surfaces based on Langmuir–Schaefer and atomic layer deposition is proposed. Ultrathin TiO2 layers that are photoelectrochemically active in water splitting are prepared by a relatively low-temperature catalytic decomposition of oleic acid capping layers of iron oxide nanoparticles and the posterior nitrogen adsorption. The results evidence that simple N-adsorption is sufficient to narrow the bandgap of TiO2 layers that is equal to bandgap narrowing (0.12 eV) observed for substitutionally N-doped materials. The photocatalytic activity tests of the prepared surfaces in water-splitting applications demonstrate ≈90% increase in the activity of the N-adsorbing TiO2 layers.
关键词: Langmuir–Schaefer,magnetite (Fe3O4),photocatalysis,titanium dioxide (TiO2),atomic layer deposition (ALD)
更新于2025-09-04 15:30:14
-
European Microscopy Congress 2016: Proceedings || Factors limiting the doping efficiency in atomic layer deposited ZnO:Al thin films: a dopant distribution study by transmission electron microscopy and atom probe tomography
摘要: Transparent conducting oxides (TCOs), such as indium tin oxide (ITO), are commonly used as transparent electrodes in a wide variety of devices, such as in displays and solar cells. ZnO has been reported to be a promising alternative TCO for ITO, because of its lower cost. As the conductivity of intrinsic ZnO films is too low for the applications in mind, doping the ZnO film is essential, the most common dopant being Al. Atomic layer deposition (ALD) is an emerging technique for the deposition of doped ZnO thin films, allowing for accurate thickness control and excellent conformality on high aspect ratio topologies. Due to the self-limiting half-reactions and cyclic nature of the ALD process, not only the aforementioned characteristics can be met, but also the amount and distribution of dopants can be controlled by selecting the precursors (i.e. the Zn or Al precursors) for each individual half-cycle. However, thus far, the maximum conductivity that can be obtained in Al-doped ZnO (ZnO:Al) thin films prepared by ALD appears to be limited by the low doping efficiency of Al. To better understand the origin of this limitation, the 3-dimensional distribution of Al atoms in ZnO films has been examined using a combination of Transmission Electron Microscopy (TEM) and Atom Probe Tomography (APT). For this study, three ZnO:Al films with different Al:Zn ratios were grown sequentially in one film stack, and capped and separated by intrinsic ZnO films. A diagram of the stack is shown in Fig. 1a. This geometry allowed a single APT or TEM measurement to collect data on all three doped films, keeping the analytical conditions identical. BFTEM studies (Fig 1b) showed that for high Al concentrations the ZnO grains are interrupted, while they continue across the lower doped layers. Scanning TEM – High Angle Annular Dark Field (HAADF) imaging and 2-D EDX mappings allows for revealing the aluminum distribution as a function of film depth, showing that the Al-doped layers follow the surface topography of the ZnO grains during growth Fig. 1c,d. However, TEM is limited in providing 3-D dopant distributions, on the one hand because of the limited sensitivity of EDX, on the other hand because of the projection of rough interfaces in a 2-D image. The latter is illustrated in Fig. 2a: individual Al-doped layers can clearly be discerned for larger interspacings, but are poorly recognizable in layer ‘AZO-3’. One-dimensional depth profiles extracted from cylindrical sub-volumes of the 3D APT data (Fig. 2 b) are presented in Fig. 2c. These 1D profiles show that the peaks in Al concentration are no δ-functions, as might be expected from the binary nature of the ALD process. Instead, the peaks have a full width at half maximum (FWHM) of ~2 nm. The 3-dimensional dopant distribution can be used to explain the dependencies of resistivity and doping efficiency on growth recipes used. When the local Al density is too high, the doping efficiency is limited by two proposed limiting factors: the solid solubility limit of Al atoms in a ZnO matrix and the disorder-induced carrier localization.
关键词: atom probe tomography,atomic layer deposition,transparent conducting oxides
更新于2025-09-04 15:30:14
-
High‐Performance, Transparent Thin Film Hydrogen Gas Sensor Using 2D Electron Gas at Interface of Oxide Thin Film Heterostructure Grown by Atomic Layer Deposition
摘要: A high-performance, transparent, and extremely thin (<15 nm) hydrogen (H2) gas sensor is developed using 2D electron gas (2DEG) at the interface of an Al2O3/TiO2 thin film heterostructure grown by atomic layer deposition (ALD), without using an epitaxial layer or a single crystalline substrate. Palladium nanoparticles (≈2 nm in thickness) are used on the surface of the Al2O3/TiO2 thin film heterostructure to detect H2. This extremely thin gas sensor can be fabricated on general substrates such as a quartz, enabling its practical application. Interestingly, the electron density of the Al2O3/TiO2 thin film heterostructure can be tailored using ALD process temperature in contrast to 2DEG at the epitaxial interfaces of the oxide heterostructures such as LaAlO3/SrTiO3. This tunability provides the optimal electron density for H2 detection. The Pd/Al2O3/TiO2 sensor detects H2 gas quickly with a short response time of <30 s at 300 K which outperforms conventional H2 gas sensors, indicating that heating modules are not required for the rapid detection of H2. A wide bandgap (>3.2 eV) with the extremely thin film thickness allows for a transparent sensor (transmittance of 83% in the visible spectrum) and this fabrication scheme enables the development of flexible gas sensors.
关键词: gas sensor,oxide heterostructure,thin film,atomic layer deposition,hydrogen
更新于2025-09-04 15:30:14
-
Atomic layer deposited TiO <sub/>2</sub> -IrO <sub/>x</sub> alloys enable corrosion resistant water oxidation on silicon at high photovoltage.
摘要: We synthesized by atomic layer deposition (ALD) TiO2-IrOx alloys that enable high photovoltages and catalyze water oxidation on silicon metal-insulator-semiconductor (MIS) photoanodes. The ratio of TiO2 to IrOx was precisely controlled by varying the number of ALD cycles for each precursor. Silicon with a 2 nm surface SiO2 layer was coated with TiO2-IrOx alloys ranging in composition from 18-35% iridium relative to the sum of titanium and iridium concentrations. IrOx catalyzed oxygen evolution and imparted a high work function to the TiO2-IrOx alloys, enabling photovoltages during water oxidation that exceeded 600 mV. TiO2 imparted stability and inhibited corrosion of the underlying silicon light absorber. After annealing in forming gas (5% H2 / 95% N2), TiO2-IrOx alloys were stable for 12 hours of continuous water oxidation in 1 M H2SO4. Key properties of the MIS junction affecting electrochemical operation were also extracted by electrochemical impedance spectroscopy. This work demonstrates that alloying by ALD is a promising approach for designing corrosion resistant Schottky contacts with optimized electronic and materials properties for catalyzed, solar driven water oxidation.
关键词: photovoltage,water oxidation,TiO2-IrOx alloys,Atomic layer deposition,corrosion resistance,silicon photoanodes
更新于2025-09-04 15:30:14
-
From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity
摘要: Bottom-up nanofabrication by area-selective atomic layer deposition (ALD) is currently gaining momentum in semiconductor processing, because of the increasing need for eliminating the edge placement errors of top-down processing. Moreover, area-selective ALD offers new opportunities in many other areas such as the synthesis of catalysts with atomic-level control. This Perspective provides an overview of the current developments in the field of area-selective ALD, discusses the challenge of achieving a high selectivity, and provides a vision for how area-selective ALD processes can be improved. A general cause for the loss of selectivity during deposition is that the character of surfaces on which no deposition should take place changes when it is exposed to the ALD chemistry. A solution is to implement correction steps during ALD involving for example surface functionalization or selective etching. This leads to the development of advanced ALD cycles by combining conventional two-step ALD cycles with correction steps in multistep cycle and/or supercycle recipes.
关键词: surface functionalization,semiconductor processing,area-selective atomic layer deposition,catalysts synthesis,selectivity,bottom-up nanofabrication,selective etching,ALD
更新于2025-09-04 15:30:14
-
High Performance On-Chip Supercapacitors Based on Mesoporous Silicon Coated with Ultrathin Atomic-Layer-Deposited In2O3 Films
摘要: On-chip supercapacitors have attracted considerable attention due to their high power density, long cycling life and compatibility with integrated circuits. One critical drawback that restricts their practical application is the low energy density. In this work, low-resistivity mesoporous silicon with a high aspect ratio is prepared by Pt film assisted-chemical etching and utilized as the scaffold of the supercapacitors. Subsequently, low resistivity (0.001 Ω·cm) and ultrathin In2O3 films are coated on the mesoporous silicon scaffold by atomic layer deposition at 200 oC, serving as the active electrode material. The electrochemical measurements reveal that the coating of the In2O3 film remarkably improves the performance of the supercapacitors compared to those without the In2O3 coating. The supercapacitors with a 4.5 nm In2O3 film coating exhibit a capacitance density of 1.36 mF/cm2 at a scan rate of 10 mV/s as well as a better stability against the scan rate. In addition, it is found that the pristine mesoporous silicon walls are collapsed after 400 times of sweeping while those with the In2O3 film coating are still intact even after 2000 times of sweeping. Meanwhile, a high energy density is also achieved without sacrificing the power performance.
关键词: In2O3 films,Pt assisted chemical etching,Mesoporous silicon,On-chip supercapacitors,Atomic layer deposition
更新于2025-09-04 15:30:14
-
Mixed-Phase (2H and 1T) MoS2 Catalyst for a Highly Efficient and Stable Si Photocathode
摘要: We describe the direct formation of mixed-phase (1T and 2H) MoS2 layers on Si as a photocathode via atomic layer deposition (ALD) for application in the photoelectrochemical (PEC) reduction of water to hydrogen. Without typical series-metal interfaces between Si and MoS2, our p-Si/SiOx/MoS2 photocathode showed efficient and stable operation in hydrogen evolution reactions (HERs). The resulting performance could be explained by spatially genuine device architectures in three dimensions (i.e., laterally homo and vertically heterojunction structures). The ALD-grown MoS2 overlayer with the mixed-phase 1T and 2H homojunction passivates light absorber and surface states and functions as a monolithic structure for effective charge transport within MoS2. It is also beneficial in the operation of p-i-n heterojunctions with inhomogeneous barrier heights due to the presence of mixed-phase cocatalysts. The effective barrier heights reached up to 0.8 eV with optimized MoS2 thicknesses, leading to a 670 mV photovoltage enhancement without employing buried Si p-n junctions. The fast-transient behaviors via light illumination show that the mixed-phase layered chalcogenides can serve as efficient cocatalysts by depinning the Fermi levels at the interfaces. A long-term operation of ~70 h was also demonstrated in a 0.5 M H2SO4 solution.
关键词: pinch-off effect,molybdenum disulfide,photoelectrochemical water splitting (PEC),p-i-n heterojunction,atomic layer deposition (ALD)
更新于2025-09-04 15:30:14