修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Simultaneous Cr(VI) removal and bisphenol A degradation in a solar-driven photocatalytic fuel cell with dopamine modified carbon felt cathode

    摘要: In this work, a carbon felt cathode modified by dopamine (DPA/CF) was explored to enhance the cathodic reduction of Cr(VI) in a two chambers photoelectrochemical system, which was driven by solar light irradiation using BiVO4 photoanode. In the anode chamber, the bisphenol A (BPA) decomposition can be significantly improved by increasing pH to 8. The electron-hole pairs photogenerated on the surface of BiVO4 were efficiently separated by the application of the DPA/CF cathode. At the optimal conditions, 86% of low-concentration BPA was removed within 60 min. In the cathodic chamber, 80% of Cr(VI) was removed at pH of 4. Based on the XPS and electrochemical analyses, it was proposed that the positively-charged groups on the DPA/CF cathode led to the multilayer adsorption of Cr(VI) anions, which enhanced the reduction of Cr(VI) with the electrons generated on the BiVO4. On the other hand, the CeO groups on the DPA/CF electrode also played an important role as electron transfer mediator for Cr(VI) reduction. The prepared DPA/CF cathode associated with BiVO4 photoanode could be a potential application for efficient removal of Cr(VI) and organic pollutants under solar light irritation.

    关键词: BiVO4 photoanode,Carbon felt cathode,Dopamine,Cr(VI),Solar photocatalysis,BPA

    更新于2025-09-23 15:23:52

  • Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride

    摘要: A facile thermal polymerization was applied to synthesize carbon and oxygen dual-doped graphitic carbon nitride (MACN) with controllable electronic band structure using malonic acid and urea as precursors. The C and O atoms substituted the sp2 N atom in graphitic carbon nitride (CN). The 1MACN (1 represented that the weight ratio of malonic acid to urea is 1% during the synthesis) with optimal band structure could decompose 15 ppm bisphenol A (BPA) within 150 min, and the mineralization rate reached to 52%. The superior photocatalytic performance of 1MACN was mainly ascribed to electronic band structure together with optical properties. On the one hand, the formation of delocalized big p bonds favored the electrons transfer after the introducing of carbon atoms. On the other hand, a positive charge density existed on the C atoms because of high electronegativity of contiguous O (3.44) that substituted N compared with C (2.55), which could attribute to high activity of MACN catalyst. The study will contribute to the further improvement of visible-light photocatalytic BPA degradation and mineralization.

    关键词: BPA mineralization,Carbon-oxygen dual-doping,Visible-light photocatalytic,Graphitic carbon nitride

    更新于2025-09-23 15:23:52

  • Glass fiber supported BiOI thin-film fixed-bed photocatalytic reactor for water decontamination under solar light irradiation

    摘要: BiOI powder has been proved to be an efficient photocatalyst, but the difficulty in removing it from water after reaction limits its application in real water treatment. To solve this problem, a thin-film fixed-bed reactor (TFFBR) was set-up by developing a BiOI thin film on glass fiber cloth (GFC). The composition and structure of the as-prepared films were characterized with X-ray diffraction, X-ray photoelectron spectroscopy, field emission microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The BiOI thin film was made by painting a silica sol containing BiOI on GFC, which could be tailored to desired sizes to accommodate the TFFBR. The mass of BiOI on the GFC increased with the number of iterations of the painting process. SiO2 sol glued the BiOI particles tightly onto the GFC, making the thin film strong enough to resist fluid flushing in the TFFBR. The photocatalytic activity of the BiOI thin film was investigated by degrading bisphenol A (BPA) under simulated sunlight. Ninety eight percent of BPA (20 mg/L in 2 L) was degraded by the BiOI thin film sample of seven layers (GFC-7) on the TFFBR within 8 hr irradiation. The GFC-7 displayed good photocatalytic ability toward artificial sewage containing BPA in a wide pH range (5–9), and also demonstrated excellent durability and reusability. The working conditions were optimized and it was found that the thickness of the fluid film and residence time over the thin film were key factors affecting the photocatalytic efficiency.

    关键词: Photocatalytic film,Sol–gel,BPA,TFFBR,BiOI

    更新于2025-09-23 15:22:29

  • A fluorometric aptasensor for bisphenol a based on the inner filter effect of gold nanoparticles on the fluorescence of nitrogen-doped carbon dots

    摘要: An aptamer-based fluorometric assay is described for the determination of bisphenol A (BPA). The aptamer against BPA is first attached to the surface of the red AuNPs, and this prevents the AuNPs from salt-induced formation of a blue-colored aggregate. Hence, the blue fluorescence of added nitrogen-doped carbon dots (NCDots) is quenched via an inner filter effect (IFE) caused by the red AuNPs. After addition of BPA, the BPA/aptamer complex is formed, and the AuNPs are no longer stabilized agains aggregation. This weakens the IFE and results in the recovery of the fluorescence of the NCDots which is measured best at excitation/emission wavelengths of 300/420 nm. The recovered fluorescence increases linearly in the 10 to 250 nM and 250 to 900 nM BPA concentration ranges, and the detection limit is 3.3 nM. The method was successfully applied to the determination of BPA in spiked environmental tap water samples.

    关键词: Wide linear range,Quick response,Salt-induced aggregation,Tap water,Low detection limit,BPA/aptamer complexes,Aggregated AuNPs,Environmental-friendly,Fluorescence quenched,Fluorescence recovery

    更新于2025-09-23 15:19:57

  • Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS

    摘要: Flexible plasmonic Surface-enhanced Raman scattering (SERS) substrates were fabricated using cellulose textile fibers, in which the textile fibers were recycled from waste paper in an eco-friendly way. The Glycidyltrimethylammonium chloride (GTAC) with positive charges was grafted onto the surface of the cellulose textile fibers through cationization. Plasmonic silver nanoparticles (Ag NPs) with negative charges were decorated onto the cellulose textile fibers via electrostatic interactions. After cationization, the variation range of the diameter of the cellulose textile fibers was significantly increased because part of the cellulose was dissolved under alkaline condition, leading to more ‘hot spots’ for SERS during the shrinking process. The cellulose textile fiber-Ag NPs nanocomposite was employed for monitoring bisphenol A (BPA) in water and soft drink by SERS and the sensitivity of BPA detection achieved 50 ppb. The recovery values of BPA in soda water samples were from 96% to 105%. These results illustrate that the cellulose textile fiber-Ag NPs nanocomposite can be used as flexible, high sensitivity SERS substrates for detecting harmful ingredients in food or environment.

    关键词: flexible sensor,BPA,Cellulose textile fiber,SERS,plasmonic NPs

    更新于2025-09-19 17:13:59

  • [IEEE 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - Rome, Italy (2019.6.17-2019.6.20)] 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - A Singular Value Decomposition Based Approach for Classifying Concealed Objects in Short Range Polarimetric Radar Imaging

    摘要: In current research one of the main challenges in short range synthetic aperture radar (SAR) is electrically small structures and objects, which tend to unclear reinforced or through the wall objects, object orientation angle, and obscure contribution to extract the position of concealed multiple small objects. In this paper, ultra-wide-band (UWB) polarimetric radar was used to study reinforced objects and for estimation of object angle at short range. Electrically small 1D periodic mesh, 2D periodic meshes and di?erently oriented small objects or meshes could not be distinguished in conventional SAR images. A radar system with transmit and receive antennae mounted on a two dimensional scanning grid was used. The aim is non-destructive testing of built structures, in concrete slab manufacturing and for use in the renovation process. UWB short range radar data and images corresponding to di?erent polarization states were analysed by using singular value decomposition (SVD). To perform decomposition, the proposed approach applies SVD to image data matrices produced from the back projection algorithm (BPA) to classify the di?erent objects and identify the object angle. Then, sets of singular-components of di?erent polarization states are analysed to classify objects. Also, the BPA algorithm is performed to construct the object images from the polarimetric radar signals. The object re?ection varied with the polarimetric state of the UWB radar, which contributes to di?erent object signatures (i.e., object intensity) since the object signature depends on the orientation, the size, and the number of objects. Object orientation with respect to the radar system and object anisotropy could be determined from the ratio of the di?erent polarimetric singular-components. This proposed complex data analysis method demonstrates the usefulness of the SVD using BPA in extracting more information about and for classifying an object.

    关键词: back projection algorithm (BPA),object classification,ultra-wide-band (UWB) polarimetric radar,Synthetic aperture radar (SAR),singular value decomposition (SVD)

    更新于2025-09-19 17:13:59