- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, etoposide
摘要: An effective SPR nanosensor based on core-shell nanoparticles (Ag@AuNPs) incorporated hexagonal boron nitride (HBN) nanosheets and molecularly imprinted polymer (MIP) was presented for etoposide (ETO) detection. Scanning electron microscope (SEM), transmission electron microscope (TEM), x-ray diffraction (XRD) method, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) methods were utilized for all characterizations of nanomaterials and polymer surfaces. ETO imprinted SPR nanosensor based on Ag@AuNPs-HBN nanocomposite was developed in the presence of poly(2-hydroxyethyl methacrylate-methacryloylamidoglutamic acid) [p(HEMA-MAGA)]. The results of the study have revealed that 0.001 - 1.00 ng mL-1 (1.70×10-12 - 1.70×10-9 M) and 0.00025 ng mL-1 (4.25×10-13 M) were found as the linearity range and the detection limit (LOD). Furthermore, the prepared SPR nanosensor was examined in terms of stability, repeatability and selectivity. Finally, the imprinted SPR nanosensor was applied to the urine samples having high recovery.
关键词: Etoposide,Core-shell nanoparticles,Hexagonal boron nitride,Urine sample,Molecular imprinted nanosensor
更新于2025-11-21 11:18:25
-
Hexagonal Boron Nitride Growth on Cu-Si Alloy: Morphologies and Large Domains
摘要: Controllable synthesis of high-quality hexagonal boron nitride (h-BN) is desired toward the industrial application of 2D devices based on van der Waals heterostructures. Substantial efforts are devoted to synthesize h-BN on copper through chemical vapor deposition, which has been successfully applied to grow graphene. However, the progress in synthesizing h-BN has been significantly retarded, and it is still challenging to realize millimeter-scale domains and control their morphologies reliably. Here, the nucleation density of h-BN on Cu is successfully reduced by over two orders of magnitude by simply introducing a small amount of silicon, giving rise to large triangular domains with maximum 0.25 mm lateral size. Moreover, the domain morphologies can be modified from needles, tree patterns, and leaf darts to triangles through controlling the growth temperature. The presence of silicon alters the growth mechanism from attachment-limited mode to diffusion-limited mode, leading to dendrite domains that are rarely observed on pure Cu. A phase-field model is utilized to reveal the growing dynamics regarding B-N diffusion, desorption, flux, and reactivity variables, and explain the morphology evolution. The work sheds lights on the h-BN growth toward large single crystals and morphology probabilities.
关键词: large domain,boron nitride,growth,morphology,chemical vapor deposition
更新于2025-11-21 11:18:25
-
Molten salt synthesis of highly ordered and nanostructured hexagonal boron nitride
摘要: Hexagonal boron nitride (h-BN) is a well-known ceramic that has wide application areas ranging from electronics to metallurgy. However, highly ordered h-BN is conventionally synthesized at high temperatures above 1800 °C. In this work, we investigated the formation of BN from boric acid (H3BO3)-ammonium chloride (NH4Cl) mixture in the sodium chloride (NaCl)-potassium chloride (KCl) eutectic salt. We report the synthesis of highly ordered and nanostructured h-BN at 1000 °C using molten salt synthesis. The effect of starting composition, synthesis temperature, and dwell time on BN formation and its structural ordering were systematically investigated. It is concluded that the molten salt plays important roles in the formation of BN and its structural ordering, which is achieved by i) decomposing the boron (B)-nitrogen (N) bearing reactants that lead to the formation of BN layers, and ii) increasing the mobility of BN layers formed. Furthermore, we propose a possible reaction mechanism that governs the BN formation from the reactant mixture in molten salts and explain the observations based on thermodynamic and kinetic considerations.
关键词: Molten salt synthesis,NaCl-KCl eutectic salt,Boron nitride,Structural ordering,High-resolution transmission electron microscopy
更新于2025-11-21 11:01:37
-
Quantification of hexagonal boron nitride impurities in boron nitride nanotubes <i>via</i> FTIR spectroscopy
摘要: Preparation of high-quality boron nitride nanotubes (BNNTs) from commercially available stock is critical for eventual industry adoption and to perform comprehensive experimental studies of BNNTs. Separation of h-BN and BNNTs is a significant challenge, and equally so, quantification of h-BN content in mixed samples is a major challenge due to their nearly identical properties. This work introduces a simple method of quantifying h-BN content in BNNTs based on FTIR analysis. Quantification is achieved by 'spiking' a BNNT sample with pure nanoscale h-BN as an internal standard. To demonstrate the efficacy of the quantification technique two BNNT enrichment methods, surfactant wrapping and centrifugation, and a novel sonication-assisted isovolumetric filtration are introduced. FTIR spectra of enriched samples show clear trends throughout the processes. We propose and demonstrate that FTIR peak ratios of the Transverse and Buckling modes of mixed h-BN/BNNT samples can be used to calibrate and quantify h-BN content in any BNNT sample. Hopefully, this method enables as-received BNNTs to be quantifiably enriched from low purity commercial feedstocks, enabling future development and study of BNNTs and related technology.
关键词: FTIR spectroscopy,Boron nitride nanotubes,hexagonal boron nitride,enrichment methods,quantification
更新于2025-11-14 15:13:28
-
Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms
摘要: This study investigated the adsorption and photocatalytic activity of TiO2-boron nitride (BN) nanocomposites for the removal of contaminants of emerging concern in water using ibuprofen as a model compound. TiO2 nanofibers wrapped by BN nanosheets were synthesized by electrospinning method. Characterization of the nanocomposite photocatalysts indicated the BN nanosheets improved the light absorbance and reduced the recombination of the photoexcited charge carriers (e- and h+). The photocatalytic oxidation products and mechanisms of ibuprofen by the TiO2-BN catalysts were elucidated using a multiple analysis approach by high performance liquid chromatography, ultraviolet absorbance, dissolved organic carbon, fluorescence excitation-emission matrices, and electrospray ionization–liquid chromatography–tandem mass spectrometry. The experimental results revealed that the photocatalytic oxidation by the TiO2-BN nanocomposites is a multi-step process and the interactions between ibuprofen molecules and the TiO2-BN nanocomposites govern the adsorption process. The increasing BN nanosheet content in the TiO2 nanofibers facilitated the breakdown of ibuprofen degradation intermediates (hydroxyibuprofen, carboxyibuprofen, and oxypropyl ibuprofen). Kinetic modeling indicated both adsorption and photocatalytic oxidation of ibuprofen by the TiO2-BN nanocomposites followed the first-order kinetic model. The photocatalytic oxidation rate increased with the increasing BN content in the nanocomposite catalysts, which was attributed to the enhanced light absorption capacity and the separation efficiency of the photoexcited electron (e-)-hole (h+) pairs. Multiple photocatalytic cycles were conducted to investigate the reusability and regeneration of the nanofibers for ibuprofen degradation.
关键词: adsorption,titanium dioxide boron-nitride nanocomposites,photocatalytic degradation mechanisms,degradation intermediates,photocatalytic oxidation
更新于2025-09-23 15:23:52
-
Functionalized Single-Atom-Embedded Bilayer Graphene and Hexagonal Boron Nitride
摘要: Single-atom-embedded bilayer graphene and two-dimensional hexagonal boron nitride are proposed in terms of first-principles calculations. In particular, a series of 68 different single atoms are embedded within bilayer graphene and boron nitride. It is revealed that the magnetic moment and bandgap behave differently depending on the atomic element used for doping where it becomes possible to form a magnet, conductor, semiconductor, or insulator. The electronic and geometrical properties of bilayer graphene and boron nitride are, in principle, able to be tailored and tuned, thereby expanding on how two-dimensional materials are functionalized and designed.
关键词: single atom,boron nitride,bandgap,graphene,functionalized graphene,magnetic moment
更新于2025-09-23 15:23:52
-
Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material
摘要: Photonic crystals (PCs) are periodically patterned dielectrics providing opportunities to shape and slow down the light for processing of optical signals, lasing and spontaneous emission control. Unit cells of conventional PCs are comparable to the wavelength of light and are not suitable for subwavelength scale applications. We engineer a nanoscale hole array in a van der Waals material (h-BN) supporting ultra-confined phonon polaritons (PhPs)—atomic lattice vibrations coupled to electromagnetic fields. Such a hole array represents a polaritonic crystal for mid-infrared frequencies having a unit cell volume of 10??λ?3 (with λ? being the free-space wavelength), where PhPs form ultra-confined Bloch modes with a remarkably flat dispersion band. The latter leads to both angle- and polarization-independent sharp Bragg resonances, as verified by far-field spectroscopy and near-field optical microscopy. Our findings could lead to novel miniaturized angle- and polarization-independent infrared narrow-band couplers, absorbers and thermal emitters based on van der Waals materials and other thin polar materials.
关键词: van der Waals material,near-field microscopy,phonon-polaritonic crystal,mid-infrared,hexagonal boron nitride,Bragg resonance
更新于2025-09-23 15:23:52
-
Pd nanoparticle-decorated hydroxy boron nitride nanosheets as a novel drug carrier for chemo-photothermal therapy
摘要: A multi-stimuli responsive nanoagent, hydroxy boron nitride nanosheets and Pd nanohybrids (Pd@OH-BNNS), was studied. The well-dispersed hydroxy boron nitride nanosheets were prepared via a facile thermal substitution approach. Pd@OH-BNNS was endowed with a photothermal property after in situ formation of Pd nanoparticles on the surface of the nanosheets. Pd@OH-BNNS as a drug delivery carrier exhibited high loading capability for the anticancer drug doxorubicin. The release of doxorubicin from the nanohybrids was triggered by a decrease in pH, and increases in glutathione concentration and near-infrared irradiation. The faster release behavior of the nanohybrids under near-infrared irradiation was confirmed by a cellular uptake study. In addition, local hyperthermia was verified using an imaging test and an infrared thermal camera. Tumor growth was remarkably inhibited in mice after two weeks of treatment with Pd@OH-BNNS/doxorubicin injection, demonstrating the high efficacy of combining chemotherapy and photothermal therapy. The Pd@OH-BNNS as a drug delivery system exhibited good stability, low cytotoxicity and multi-stimuli responsiveness.
关键词: photothermal therapy,Pd nanoparticles,drug delivery system,hydroxy boron nitride,nanohybrids
更新于2025-09-23 15:23:52
-
Electrowetting on 2D dielectrics: a quantum molecular dynamics investigation
摘要: Electrowetting on dielectrics (EWOD) is widely used to manipulate the spreading of a conductive liquid on a dielectric surface by applying an electric field. 2D hydrophobic dielectrics are promising candidates for EWOD applications. In this study, extensive quantum molecular dynamics (MD) simulations are performed to investigate the electrowetting behavior of salty water on hexagonal boron nitride (h-BN) monolayer. The proximal adsorption of salt ions and the associated realignment of the dipole moments of interfacial water with the applied electric field are found to be the physical origin of the electrowetting behavior. At low salt concentration and low electric fields, the proximal adsorption and the realignment follow the applied electric field, and the cosine of the water contact angle (WCA) follows a quadratic dependence on the applied electric field. At high salt concentration and high electric fields, the proximal adsorption saturates, which restricts further realignment and causes a saturation of the WCA. This case study provides physical insights into the much debated mechanism that underlies the contact angle saturation (CAS) found in macroscopic electrowetting phenomena and also provides an avenue for further studies of electrowetting at the atomic scale.
关键词: hexagonal boron nitride monolayer,contact angle saturation,electrowetting on dielectrics,first-principles
更新于2025-09-23 15:23:52
-
Panorama of boron nitride nanostructures via lamp ablation
摘要: A diverse range of remarkable boron nitride (BN) nanostructures subsuming nano-horns, nano-rods, nano-platelets, and clusters of hollow nanospheres (nano-onions, arguably of greatest applied and fundamental interest) have been produced exclusively from crystalline BN precursor powder via lamp ablation. The procedure is safe, devoid of toxic reagents, simple, rapid and scalable—generating some genres of nanoparticles that had previously proved elusive. Product structure and composition were unambiguously assessed by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy.
关键词: lamp ablation,non-toxic,boron nitride,nanostructures,nano-onions
更新于2025-09-23 15:23:52