- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Wafer-scale transferred multilayer MoS2 for high performance field effect transistors
摘要: Chemical vapour deposition (CVD) synthesis of semiconducting transition metal dichalcogenides (TMDs) offers a new route to build next-generation semiconductor devices. But realization of continuous and uniform multilayer (ML) TMD films is still limited by their specific growth kinetics, such as the competition between surface and interfacial energy. In this work, a layer-by-layer vacuum stacking transfer method is applied to obtain uniform and non-destructive ML-MoS2 films. Back-gated field effect transistors (FET) arrays of 1L- and 2L-MoS2 are fabricated on the same wafer, and their electrical performances are compared. We observe a significant increase of field-effect mobility for 2L-MoS2 FETs, up to 32.5 cm2V-1s-1, which is 7 times higher than that of 1L-MoS2 (4.5 cm2V-1s-1). Then we also fabricated 1L-, 2L-, 3L-, and 4L-MoS2 FETs to further investigate the thickness dependent characteristics of transferred ML-MoS2. Measurement results show a higher mobility but a smaller current on/off ratio as the number of layer increases, suggesting that a balance between mobility and current on/off ratio can be achieved in 2L- and 3L-MoS2 FETs. Dual-gated structure is also investigated to demonstrate an improved electrostatic control of the ML-MoS2 channel.
关键词: Field effect transistors,Transfer,CVD growth,2D materials,MoS2
更新于2025-09-23 15:22:29
-
Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy
摘要: Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) images of graphene reveal either a triangular or honeycomb pattern at the atomic scale depending on the imaging parameters. The triangular patterns at the atomic scale are particularly difficult to interpret, as the maxima in the images could be every other carbon atom in the six-fold hexagonal array or even a hollow site. Carbon sites exhibit an inequivalent electronic structure in HOPG or multilayer graphene due to the presence of a carbon atom or a hollow site underneath. In this work, we report small-amplitude, simultaneous STM/AFM imaging using a metallic (tungsten) tip, of the graphene surface as-grown by chemical vapor deposition (CVD) on Cu foils. Truly simultaneous operation is possible only with the use of small oscillation amplitudes. Under a typical STM imaging regime the force interaction is found to be repulsive. Force–distance spectroscopy revealed a maximum attractive force of about 7 nN between the tip and carbon/hollow sites. We obtained different contrast between force and STM topography images for atomic features. A honeycomb pattern showing all six carbon atoms is revealed in AFM images. In one contrast type, simultaneously acquired STM topography revealed hollow sites to be brighter. In another, a triangular array with maxima located in between the two carbon atoms was acquired in STM topography.
关键词: scanning tunneling microscopy,CVD graphene,simultaneous operation,atomic force microscopy,small amplitude
更新于2025-09-23 15:22:29
-
Luminescent silicon oxycarbide thin films obtained with monomethyl-silane by hot-wire chemical vapor deposition
摘要: The use of silicon-based materials can represent enormous advantages to develop optoelectronic devices. The preparation of luminescent silicon oxycarbide thin films deposited by the hot-wire CVD technique using monomethyl-silane as single and safer source of silicon and carbon atoms is here reported. The conditions for deposition that allow obtaining an intense emission on these thin films in a wide region of the visible spectrum at low deposition temperature without further thermal annealing are presented. When the oxygen flow rate was increased, a transition from silicon carbide to silicon oxycarbide was observed. X-ray diffraction confirms the presence of nanocrystalline material. Measurements showed that the origin of the photoluminescence may be to a combination of quantum confinement effects and defects in the silicon oxycarbide matrix, mainly those related to oxygen deficient centers and hydrogen and carbon-related defects. The obtained results are promising for the development of light emitting devices compatible with current technologies at low cost.
关键词: white luminescence,Silicon oxycarbide,HW-CVD,monomethyl-silane
更新于2025-09-23 15:21:21
-
Design and Operation of an Optically-Accessible Modular Reactor for Diagnostics of Thermal Thin Film Deposition Processes
摘要: The design and operation of a simple, optically-accessible modular reactor for probing thermal thin film deposition processes, such as atomic layer deposition processes (ALD) and chemical vapor deposition (CVD), is described. This reactor has a nominal footprint of 225 cm2 and a mass of approximately 6.6 kg, making it small enough to conveniently function as a modular component of an optical train. The design is simple, making fabrication straightforward and relatively inexpensive. Reactor operation is characterized using two infrared absorption measurements to determine exhaust times for tetrakis(dimethylamino)titanium and water, proto-typical ALD precursors, in a pressure and flow regime commonly used for ALD.
关键词: ALD,atomic layer deposition,in situ,reactor,diagnostics,chemical vapor deposition,CVD,optical cell
更新于2025-09-23 15:21:21
-
Effect of low-energy ion impact on the structure of hexagonal boron nitride films studied in surface-wave plasma
摘要: A high‐density surface‐wave plasma source is used to deposit hexagonal boron nitride (hBN) films in a gas mixture of He, H2, N2, Ar, and BF3 under a high ion flux condition using low‐energy ion irradiation. The ion energy is controlled between around zero and 100 eV by applying a negative or positive bias voltage to a substrate, while the ion flux is increased by locating a substrate upstream in the diffusive plasma. For ion energies above ~37 eV, the structure of the films depends upon ion energy more than substrate temperature, typical of subplantation processes. As a result, the structural order and crystallinity of sp2‐bonded phase in the films characterized by Fourier transform infrared spectroscopy and X‐ray diffraction are increased with decreasing ion energy, while the mass density of the films characterized by X‐ray reflectivity is retained relatively high with a slight dependence upon ion energy.
关键词: surface‐wave plasma,Fourier transform infrared spectroscopy (FTIR),chemical vapor deposition (CVD),hexagonal boron nitride (hBN),X‐ray diffraction (XRD),X‐ray reflectivity (XRR)
更新于2025-09-23 15:21:21
-
Low temperature platinum chemical vapor deposition on functionalized self-assembled monolayers
摘要: The reaction pathways of Pt CVD using (COD)PtMe2 – xClx (x = 0, 1, 2) have been investigated on functionalized self-assembled monolayers (SAMs) as models for organic substrates. Residual gas analysis for (COD)PtMe2 and (COD)PtMeCl is consistent with the loss of methyl radicals as the initial step in deposition, while for (COD)PtCl2, the first step is the loss of a chlorine radical. It is further shown using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry that the deposition process leads to chemical damage of the SAM layer and little Pt deposition. Using this understanding, it is demonstrated that the Pt CVD rate can be controlled using a radical trap. In the presence of 1,4-cyclohexadiene, a well-known alkyl radical trap, Pt deposition was increased by 5× to 10×, creating a room-temperature effective Pt CVD process.
关键词: time-of-flight secondary ion mass spectrometry,x-ray photoelectron spectroscopy,Pt CVD,chemical vapor deposition,self-assembled monolayers,radical trap
更新于2025-09-23 15:21:01
-
Wafer Scale Graphene Field Effect Transistors on Thin Thermal Oxide
摘要: In this study, we present the feasibility to fabricate back-gated graphene field-effect transistors (GFETs) on 10 nm thermal SiO2 substrate. Here, we compare the mobility of graphene devices at different locations of the transferred CVD graphene. We observed that there is a n-type doping of the graphene devices with Dirac points within ± 0.5 V from an ideal value of 0 V. The downscaling of the back-gate dielectric thickness reduces the operating voltage range, commonly required for low power electronics, and the devices are stable during operation in air under ambient conditions. The extracted contact resistance is comparable to the earlier reports found in literature and this provides a feasibility to fabricate low power futuristic graphene based nanoelectronics.
关键词: CVD graphene,n-type doping,thermal SiO2,mobility,Dirac points,low power electronics,field-effect transistors,graphene,contact resistance
更新于2025-09-23 15:21:01
-
A Benchmark of 300mm RP-CVD Chambers for the Low Temperature Epitaxy of Si and SiGe
摘要: we have assessed, in 300 mm Reduced Pressure – Chemical Vapour Deposition chambers from major suppliers, the advantages and drawbacks of disilane for the low temperature growth of Si and SiGe. Si growth rates are, for T < 575°C, approximately ten times higher with Si2H6 than with SiH4, which are in turn roughly ten times higher than with SiH2Cl2. For given GeH4 and Si precursor mass-flow ratios, lower Ge contents and much higher SiGe growth rates are obtained at 550°C, 20 Torr with Si2H6 than with SiH4 and especially SiH2Cl2. Growth rates (Ge concentrations) are with SiH4 and SiH2Cl2 lower (slightly lower) in Supplier A than in Supplier B chamber. The situation is the opposite with Si2H6. This is assigned to (i) a ~ 5°C offset between the two and (ii) effective precursor flows which are different, most likely due to chamber geometry differences. Growth rate activation energies and relationships linking Ge concentration to precursor mass-flow ratios are quite similar, however, making process transfer between the two rather easy. Finally, we have compared ex-situ “HF-Last” wet cleanings and in-situ surface preparation processes for Si surface conditioning prior to epitaxy. Surfaces are after the latter always under high purity N2. This results in a threshold H2 bake temperature (above which there is no O interfacial contamination anymore) which is shifted downwards by ~ 25°C (from 775°C down to 750°C). Below that threshold, O sheet concentrations are with in-situ processes typically one third those associated with “HF-Last” wet cleanings and epitaxial surfaces are smoother.
关键词: surface preparation,SiGe,silane,disilane,RP-CVD,low temperature growth,Si,dichlorosilane
更新于2025-09-23 15:21:01
-
Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films
摘要: Polycrystalline diamond films with systematic change in microstructure that varies from microcrystalline to nanocrystalline structure are synthesized on Si by hot filament chemical vapor deposition. The morphology and structural properties of the grown diamond films are analyzed using field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffraction and Raman spectroscopy. The average roughness and grain size of the diamond films decrease with increase in CH4 to H2 ratio from 0.5 to 3%. Also, structural disorder in these diamond films increases with decrease in grain size as evidenced from Raman spectroscopy. The coefficient of friction (CoF) is found to be very low for all the films. However, the average CoF is found to increase from 0.011 ± 0.005 to 0.03 ± 0.015 as the grain size decrease from ~1 μm down to ~20 nm. Post analysis of wear track by FESEM, AFM based nanoscale friction and Raman spectroscopy reveal that microcrystalline diamond undergoes shear induced amorphization with negligible wear rate while nanocrystalline diamond films undergo shear induced plastic deformation without amorphization. A comprehensive mechanism for the observed CoF is discussed in the framework of microstructure, structural disorder and shear induced tribo-chemical reactions at the sliding interface.
关键词: Raman spectroscopy,Tribology,Diamond,Scanning electron microscopy,Hot filament CVD,Atomic force microscopy
更新于2025-09-23 15:21:01
-
Insights into the Role of Plasma in Atmospheric Pressure Chemical Vapor Deposition of Titanium Dioxide Thin Films
摘要: In this work, the effect of plasma on the chemistry and morphology of coatings deposited by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (AP-PECVD) is investigated. To do so, plasma deposited amorphous titanium dioxide (TiO2) thin films are compared to thin films deposited using Atmospheric Pressure Chemical Vapor Deposition (AP-CVD) not involving the use of plasma. We focus here on the effect and the interest of plasma in the AP-PECVD process over AP-CVD for low substrate temperature deposition. The advantages of AP-PECVD over AP-CVD are often suggested in many articles however no direct evidence of the role of the plasma for TiO2 deposition at atmospheric pressure was reported. Hence, herein, the deposition via both methods is directly compared by depositing coatings with and without plasma using the same CVD reactor. Through the control of the plasma parameters, we are able to form low carbon coatings at low temperature with a deposition rate twice faster than AP-CVD, clearly showing the interest of plasma. Plasma enhanced methods are promising for the deposition of coatings at industrial scale over large surface and at high rate.
关键词: AP-PECVD,TiO2 thin films,Atmospheric Pressure Chemical Vapor Deposition,Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition,plasma,AP-CVD,low substrate temperature deposition
更新于2025-09-23 15:21:01