- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2018
- metal object detection (MOD)
- wireless power transfer (WPT)
- auxiliary detection coil
- Chest X-ray (CXR)
- Computer-aided Diagnosis (CADx)
- Early detection of tuberculosis
- Electrical Engineering and Automation
- Optoelectronic Information Science and Engineering
- Shanghai Jiao Tong University
- Bandung Institute of Technology (ITB)
-
Ultrasensitive tantalum oxide nano-coated long-period gratings for detection of various biological targets
摘要: In this work we discussed a label-free biosensing application of long-period gratings (LPGs) optimized in refractive index (RI) sensitivity by deposition of thin tantalum oxide (TaOx) overlays. Comparing to other thin film and materials already applied for maximizing the RI sensitivity, TaOx offers good chemical and mechanical stability during its surface functionalization and other biosensing experiments. It was shown theoretically and experimentally that when RI of the overlay is as high as 2 in IR spectral range, for obtaining LPGs ultrasensitive to RI, the overlay’s thickness must be determined with subnanometer precision. In this experiment the TaOx overlays were deposited using Atomic Layer Deposition method that allowed for achieving overlays with exceptionally well-defined thickness and optical properties. The TaOx nano-coated LPGs show RI sensitivity determined for a single resonance exceeding 11,500 nm/RIU in RI range nD=1.335-1.345 RIU, as expected for label-free biosensing applications. Capability for detection of various in size biological targets, i.e., proteins (avidin) and bacteria (Escherichia coli), with TaOx-coated LPGs was verified using biotin and bacteriophage adhesin as recognition elements, respectively. It has been shown that functionalization process, as well as type of recognition elements and target analyte must be taken into consideration when the LPG sensitivity is optimized. In this work optimized approach made possible detection of small in size biological targets such as proteins with sensitivity reaching 10.21 nm/log(ng/ml).
关键词: protein detection,label-free biosensing,optical fiber sensor,tantalum oxide,bacteria detection,long-period grating,atomic layer deposition
更新于2025-11-28 14:23:57
-
A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing
摘要: Upconversion nanoparticle-based lateral flow assays (UCNP-LFAs) have attracted significant attention in point-of-care testing (POCT) applications, due to the long-term photostability and enhanced signal-to-background noise ratio. The existing UCNP-LFAs generally require peripheral equipment for exciting fluorescent signals and reading out fluorescence results, which are generally bulky and expensive. Herein, we developed a miniaturized and portable UCNP-LFA platform, which is composed of a LFA detection system, an UCNP-LFA reader and a smartphone-assisted UCNP-LFA analyzer. The LFA detection system is based on three types of UCNPs for multiplexed detection. The reader has a dimension of 24.0 cm×9.4 cm×5.4 cm (L×W×H) and weight of 0.9 kg. The analyzer based on the custom-designed software of a smartphone (termed as UCNP-LFA analyzer) can get the quantitative analysis results in a real-time manner. We demonstrated the universality of this platform by highly sensitive and quantitative detections of several kinds of targets, including small molecule (ochratoxin A, OTA), heavy metal ion (Hg2+), bacteria (salmonella, SE), nucleic acid (hepatitis B virus, HBV) and protein (growth stimulation expressed gene 2, ST-2). Our developed UCNP-LFA platform holds great promise for applications in disease diagnostics, environmental pollution monitoring and food safety at the point of care.
关键词: UCNP-based biosensor,telemedicine,point-of-care diagnostics,paper microfluidics,multiplexed detection,miniaturized device
更新于2025-11-28 14:23:57
-
Turbidimetric inhibition immunoassay revisited to enhance its sensitivity via an optofluidic laser
摘要: Turbidimetric inhibition immunoassay (TIIA) is a classic immunodiagnostic method that has been extensively used for biomarker detection. However, the low sensitivity of this technique hinders its applications in the early diagnosis of diseases. Here, a new concept, optofluidic laser TIIA (OFL-TIIA), is proposed and demonstrated for sensitive protein detection. In contrast to the immunoreaction in traditional TIIA, in which the single-pass laser loss is detected, the immunoreaction in the OFL-TIIA method takes place in a laser cavity, which considerably increases the loss induced by antigen-antibody complexes (AACs) via the amplification effect of the laser. A commercial IgG TIIA kit was selected as a demonstrative model to characterize the performance of OFL-TIIA. A wide dynamic range of five orders of magnitude with an exceptional limit of detection (LOD) (1.8×10-10 g/L) was achieved. OFL-TIIA is a fast, sensitive, and low-cost immunoassay with a simple homogeneous and wash-free process and low-volume sample consumption, thus providing a new detection platform for disease diagnostics.
关键词: Biomarker detection,Optofluidic laser,Turbidimetric inhibition immunoassay,Antigen-antibody complexes,Laser dye
更新于2025-11-25 10:30:42
-
Hydrogen peroxide detection with a silver nanoparticle grating chip fabricated by plasmonic plating
摘要: An optical detection of hydrogen peroxide (H2O2) is proposed, using grating structures of silver nanoparticles (AgNPs). Periodic line structures of AgNPs are deposited on a gold nanoparticle (AuNP)-decorated glass plate using an interference exposure with a green laser beam, based on the plasmonic plating method. This AgNP grating chip diffracts incident light, and the diffraction efficiency is dependent on the amount of AgNPs. By applying a drop of H2O2 solution onto the chip, the diffraction intensity declines due to the autocatalytic decomposition of AgNPs. A portable measurement system of the diffraction intensity change is constructed, and the H2O2 detection in the concentration range 6.7 – 668 μmol/L is performed in 2 min simply by dropping the H2O2 solution onto the substrate.
关键词: silver nanoparticles,plasmonic plating,optical sensor,hydrogen peroxide detection,diffraction grating
更新于2025-11-25 10:30:42
-
Multifunctional and Recyclable TiO2 Hybrid Sponges for Efficient Sorption, Detection, and Photocatalytic Decomposition of Organic Pollutants
摘要: Developing techniques for monitoring and removing organic pollutants such as solvents and dyes in environmental media is a very important task nowadays. To get rid of the pollutants, efficient materials that can sorb, detect, and decompose such compounds have been consistently sought after. Herein, we demonstrate a simple and inexpensive method to fabricate eco-friendly multifunctional and recyclable TiO2 hybrid sponges composed of a polydimethylsiloxane (PDMS) network and functional nanoparticles. Water-soluble crystals were used to construct porous templates and TiO2 nanoparticles were additionally integrated into the templates where liquid PDMS was filled. After curing the PDMS, the TiO2 integrated hybrid sponges were finally obtained by dissolving the templates with water. By using the fabricated hybrid sponges, sorbed organic pollutants were qualitatively detected via molecular-specific Raman signals. Furthermore, we showed the recyclability by achieving photocatalytic decomposition of the sorbed pollutants induced by the TiO2 nanoparticles. These results are instructive for further applications and also contribute toward solving problems relating to environmental pollution.
关键词: TiO2 hybrid sponge,Raman detection,photocatalytic decomposition,organic pollutants,efficient sorption
更新于2025-11-25 10:30:42
-
Pyrophosphate Prompted Aggregation-Induced Emission: Chemosensor Studies, Cell Imaging, Cytotoxicity, and Hydrolysis of the Phosphoester Bond with Alkaline Phosphatase
摘要: Two zinc complexes [(Zn)2(L2)2Cl2(DMSO)2] (R1) and [Zn(L2)2(NO3)2(H2O)2] (R2) were synthesized and characterized with various spectroscopic data. The single X-ray structure determination reveals that complex R1 is dinuclear and tetrahedral in geometry, while complex R2 is mononuclear and octahedral in geometry. Further, both zinc complexes were investigated for pyrophosphate sensing in an aqueous medium. Complex R1 is found to be selective towards pyrophosphate; it leads to 5.5-fold enhancement in the emission intensity due to aggregation-induced emission. However, complex R2 has shown binding with all, ATP, AMP, ADP, and pyrophosphate, which is attributed to the chelate effect. Consequently, complex R1 was utilized for the intracellular detection of pyrophosphate in HeLa cells. Furthermore, the PPi based zinc complex R1 is also used as a bio-analytical tool to construct a real-time fluorescence assay for the enzymatic activity of alkaline phosphatases (ALP).
关键词: Intracellular detection,Sensors,Fluorescence,Zinc,ALP activity,Pyrophosphate
更新于2025-11-21 11:24:58
-
A Double-Hybridization Approach for the Transcription- and Amplification-Free Detection of Specific mRNA on a Microarray
摘要: A double-hybridization approach was developed for the enzyme-free detection of specific mRNA of a housekeeping gene. Targeted mRNA was immobilized by hybridization to complementary DNA capture probes spotted onto a microarray. A second hybridization step of Cy5-conjugated label DNA to another section of the mRNA enabled specific labeling of the target. Thus, enzymatic artifacts could be avoided by omitting transcription and amplification steps. This manuscript describes the development of capture probe molecules used in the transcription- and amplification-free analysis of RPLP0 mRNA in isolated total RNA. An increase in specific signal was found with increasing length of the target-specific section of capture probes. Unspecific signal comprising spot autofluorescence and unspecific label binding did not correlate with the capture length. An additional spacer between the specific part of the capture probe and the substrate attachment site increased the signal significantly only on a short capture probe of approximately 30 nt length.
关键词: gene expression,enzyme-free,fluorescence microscopy,mRNA detection,microarray
更新于2025-11-21 11:24:58
-
MnO2 Nanosheet-mediated Ratiometric Fluorescence Biosensor for MicroRNA Detection and Imaging in Living Cells
摘要: MicroRNA (miRNA) plays significant roles in cell proliferation, differentiation and apoptosis, and has been considered to be valuable biomarker for cancer. Accurate and sensitive detection of miRNA is crucially significant for cancer diagnosis and treatment. Here, a MnO2 nanosheet-mediated ratiometric fluorescence biosensor was designed for miRNA detection and imaging in living cells. It contained MnO2 nanosheets acting as DNA carrier, and fluorescent donor (FAM)-labeled hairpin H1 (recognition probe) and fluorescent acceptor (TAMRA)-labeled hairpin H2 (amplification probe). When the biosensor entered cell by endocytosis, MnO2 nanosheets were degraded to Mn2+ via intracellular glutathione (GSH) and the adsorbed hairpins H1 and H2 were released. The intracellular target miRNA-21 hybridized with the recognition unit of H1 to initiate catalyzed hairpin assembly (CHA) and a large amount of H1-H2 duplexes were produced. This brought fluorescent donor FAM and fluorescent acceptor TAMRA into close proximity to produce fluorescence resonance energy transfer (FRET), inducing a ratiometric fluorescent response (donor signal decreased and acceptor signal enhanced) for miRNA-21 detection. Furthermore, this method could be applied to differentiate the expression levels of miRNA-21 in HeLa, HepG-2 and L02 cells. These results indicated that the proposed method possessed great potential in the early diagnosis of miRNA-related diseases.
关键词: MicroRNA detection,MnO2 nanosheets,Ratiometric,Cell imaging
更新于2025-11-21 11:24:58
-
A high-affinity fluorescence probe for copper(II) ions and its application in fluorescence lifetime correlation spectroscopy
摘要: Copper is one of the most important transition metals in many organisms where it catalyzes a manifold of different processes. As a result of copper’s redox activity, organisms have to avoid unbound ions, and a dysfunctional copper homeostasis may lead to multifarious pathological processes in cells with very severe ramifications for the affected organisms. In many neurodegenerative diseases, however, the exact role of copper ions is still not completely clarified. In this work, a high-affinity and highly selective copper probe molecule, based on the naturally occurring tetrapeptide DAHK is synthesized. The sensor (log KD = ? 12.8 ± 0.1) is tagged with a fluorescent BODIPY dye whose fluorescence lifetime distinctly decreases from 5.8 ns ± 0.2 ns to 0.4 ns ± 0.1 ns on binding to copper(II) cations. It is shown by using fluorescence lifetime correlation spectroscopy that the concentration of both probe and probe-copper complex can be simultaneously measured even at nanomolar concentration levels. This work presents a possible starting point for a new type of probe and method for future in vivo studies to further reveal the exact role of copper ions in organisms.
关键词: BODIPY,Single molecule detection,FLIM,Alzheimer,ATCUN motif,Parkinson,DAHK
更新于2025-11-21 11:24:58
-
In Situ Enzyme Immobilization with Oxygen‐Sensitive Luminescent Metal–Organic Frameworks to Realize “All‐in‐One” Multifunctions
摘要: Metal-organic frameworks (MOFs) for enzyme immobilization have already shown superior tunable and designable characteristics, however, their devisable responsive properties have rarely been exploited. Herein, we integrated a responsive MOF into MOF-enzyme composite to propose an “all-in-one” multifunctional composite with catalytic and luminescence functions implemented within a single particle. As a proof-of-concept, glucose oxidase (GOx) was in situ encapsulated within an oxygen (O2)-sensitive, noble-metal-free luminescent Cu(I) triazolate framework (MAF-2), namely GOx@MAF-2. Owing to the rigid scaffold of MAF-2 and the confinement effect, the GOx@MAF-2 composite showed significantly improved stability (shelf life to 60 days and heat-resistance up to 80 oC) with good selectivity and recyclability. More importantly, the integration of the O2-sensitivity of MAF-2 allowed the GOx@MAF-2 composite rapidly and reversibly response toward dissolved O2, which realized direct and ratiometric sensing of glucose without the needs of chromogenic substrates, cascade enzymatic reactions or electrode system. A high sensitivity with a detection limit of 1.4 μM glucose was achieved, and the glucose in human sera was accurately determined. The strategy opens a new application of MOFs and can be facilely extended to various MOF-enzyme composites due to the multifunctionality of MOFs.
关键词: enzyme immobilization,metal-organic frameworks,all-in-one multifunctions,glucose detection,fluorometric sensor
更新于2025-11-21 11:08:12