- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Surface plasmon resonance of naked gold nanoparticles for photodynamic inactivation of Escherichia coli
摘要: Although antimicrobial photothermal inactivation of naked gold nanostructures using powerful pulsed lasers has been previously studied, there are little reports about their photodynamic antimicrobial properties under the irradiation of low-power density continuous wave lasers. Therefore, this paper attempts to fill this gap. In this paper, we studied the effects of a 40-mW/cm2 continuous Nd:Yag laser at 532 nm and naked gold nanoparticles on inactivation of Escherichia coli ATCC25922. According to our results, 60 min illumination using the Nd:Yag laser caused a 0.15log reduction of the bacterial viability. Also, the employed gold nanoparticles with an average size of 15 nm were toxic to E. coli ATCC 25922 in the concentrations above 0.5 μg/ml. In addition, synergistic effects of 0.5 μg/ml gold nanoparticles and the light illumination led to a 2.43log reduction of the viability after a 60-min exposure and did not show any considerable temperature change on the media. The obtained results were justified based on the possible interaction mechanisms of low-power density laser lights and naked gold nanoparticles. The paper is proposed as a prelude for future research about localized inactivation of resistant pathogens with minimum side effects on neighbor tissues.
关键词: Photodynamic inactivation,Gold nanoparticles,Low-power density laser,Surface plasmon resonance
更新于2025-11-25 10:30:42
-
Femtosecond Spectroscopy of Au Hot-Electron Injection into TiO2: Evidence for Au/TiO2 Plasmon Photocatalysis by Bactericidal Au Ions and Related Phenomena
摘要: In the present work, we provide evidence for visible light irradiation of the Au/TiO2 nanoparticles’ surface plasmon resonance band (SPR) leading to electron injection from the Au nanoparticles to the conduction band of TiO2. The Au/TiO2 SPR band is shown to greatly enhance the light absorption of TiO2 in the visible region. Evidence is presented for the light absorption by the Au/TiO2 plasmon bands leading to the dissolution of Au nanoparticles. This dissolution occurs concomitantly with the injection of the hot electrons generated by the Au plasmon into the conduction band of TiO2. The electron injection from the Au nanoparticles into TiO2 was followed by femtosecond spectroscopy. The formation of Au ions was further confirmed by the spectral shift of the transient absorption spectra of Au/TiO2. The spectral changes of the SPR band of Au/TiO2 nanoparticles induced by visible light were detected by spectrophotometer, and the morphological transformation of Au/TiO2 was revealed by electron microscopy techniques as well. Subsequently, the fate of the Au ions was sorted out during the growth and biofilm formation for some selected Gram-negative bacteria. This study compares the bactericidal mechanism of Au ions and Ag ions, which were found to be substantially different depending on the selected cell used as a probe.
关键词: electron injection,antibacterial effects,genes expression,DNA repair,quorum sensing,plasmon photocatalysis,biofilms,gold nanoparticles,porins
更新于2025-11-21 11:20:42
-
Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies
摘要: A rapid, facile and label-free sensing strategy is developed for the detection of dopamine (DA) in the real samples by exploiting nitrogen-doped graphene quantum dots (N-GQDs) decorated on Au nanoparticles (Au@N-GQD). The as-grown Au@N-GQD exhibits strong blue fluorescence at room temperature and the fluorescence intensity is drastically quenched in presence of DA in neutral medium. The mechanistic insight into the DA sensing by Au@N-GQDs is explored here by careful monitoring of the evolution of the interaction of Au NPs and N-GQDs with DA under different conditions through electron microscopic and spectroscopic studies. The highly sensitive and selective detection of DA over a wide range is attributed to the unique core-shell structure formation with Au@N-GQD hybrids. The quenching mechanism involves the ground state complex formation as well as electron transfer from N-GQDs. The presence of Au NPs in Au@N-GQD hybrids accelerates the quenching process (~14 fold higher than bare N-GQDs) by the formation of stable dopamine-o-quinone (DQ) in this present detection scheme. The fluorescence quenching follows the linear Stern-Volmer plot in the range 0-100 μM, establishing its efficacy as a fluorescence-based DA sensor with a limit of detection (LOD) 590 nM, which is ~27 fold lower than the lowest abnormal concentration of DA in serum (16 μM). This sensing scheme is also successively applied to trace DA in Brahmaputra river water sample with LOD 480 nM including its satisfactory recovery (95-112%). Our studies reveal a novel sensing pathway for DA through the core-shell structure formation and it is highly promising for the design of efficient biological and environmental sensor.
关键词: Dopamine,Fluorescence quenching,Nitrogen-doped graphene quantum dots,Colorimetric sensing,Core-shell structure,Gold nanoparticles
更新于2025-11-21 11:01:37
-
Plasmonic Metasurfaces with Tunable Gap and Collective SPR Modes
摘要: Optical properties of a plasmonic metasurface made of a monolayer of gold nanoparticles in close proximity to an aluminum thin film were studied numerically and experimentally. Extinction spectra of the plasmonic metasurface were studied as functions of the thickness of a dielectric spacer between the monolayer of gold nanoparticles and the aluminum film in the visible wavelength range. The goal was to understand the excitation of a collective surface plasmon resonance (SPR) mode and a gap plasmon mode as well as their dependence on the spacer thickness, nanoparticles spacing and their size. By using finite-difference-time-domain (FDTD) calculations we find that the SPR extinction peak first red-shifts and then splits into two peaks. The first extinction peak is associated with the collective SPR mode of the monolayer and it shifts to shorter wavelengths as the spacer layer decreases. As the spacer layer decreases from 35 nm to 7.5 nm, the second peak gradually appears in the extinction spectra of the metasurface. We assign the second peak to the gap mode. The gap mode first appears at around 620 nm or greater and it shifts to larger wavelength for larger nanoparticle spacing and size. The FDTD simulations are confirmed by an experimental examination of the dispersion curves of a similar multilayer system. The computational results match the experimental results and confirm the excitation of the two modes.
关键词: gap plasmon mode,surface plasmon resonance,Plasmonic metasurfaces,aluminum thin film,FDTD,gold nanoparticles
更新于2025-11-19 16:56:42
-
MSOT/CT/MR imaging Guided and hypoxia Maneuvered Oxygen self-sufficiency radiotherapy based on One-pot MnO2-mSiO2 @ Au nanoparticle
摘要: Radiotherapy (RT) is one of the most widely applied treatments for cancer therapy in the clinic. Herein, we constructed an innovative multifunctional nanotheranostic MnO2-mSiO2@Au-HA nanoparticles (MAHNPs) based on one-pot MnO2-mSiO2 nanohybrids (MNHs) and gold nanoparticles (AuNPs) for multispectral optoacoustic tomography (MSOT)/ computed tomography (CT) and magnetic resonance (MR) imaging guided hypoxia-maneuvered radiotherapy. The MNHs were prepared by a facile one-pot approach which avoided the leakage of MnO2 nanoparticles as well as increased the efficiency on preparation. The Mn2+ ions could trigger the breakdown of endogenous H2O2 to generate O2 to convert the hypoxic tumor micro-environment (TME), thus enhancing radiotherapy by self-sufficiency oxygen. In addition, hyaluronic acid (HA) was employed to modify the surface of MnO2-mSiO2@Au nanoparticles to improve biocompatibility and cellular uptake. The well-designed nanoparticles could perform remarkable photothermal therapy (PTT) and hypoxia-maneuvered radiotherapy (RT) simultaneously as well as MSOT/CT/MR imaging. In vivo studies showed that MAHNPs achieved almost entirely suppression of tumor growth without observable recurrence, which raised new possibilities for clinical nanotheranostics with multimodal diagnostic and therapeutic coalescent design.
关键词: photothermal therapy (PTT),gold nanoparticles,nanotheranostics,MSOT/CT/MR imaging,hypoxia-maneuvered radiotherapy,MnO2-mSiO2 nanohybrids
更新于2025-11-19 16:56:35
-
Atmospheric Pressure Plasma Synthesized Gold Nanoparticle/Carbon Nanotube Hybrids for Photo-thermal Conversion
摘要: In this work, a room temperature atmospheric pressure direct-current plasma has been deployed for the one-step synthesis of gold nanoparticle/carboxyl group functionalized carbon nanotube (AuNP/CNT-COOH) nanohybrids in aqueous solution for the first time. Uniformly distributed AuNPs are formed on the surface of CNT-COOH, without the use of reducing agents or surfactants. The size of the AuNP can be tuned by changing the gold salt precursor concertation. UV-Vis, ζ-potential and X-ray photoelectron spectroscopy suggest that carboxyl surface functional groups on CNTs served as nucleation and growth sites for AuNPs and the multiple potential reaction pathways induced by the plasma-chemistry have been elucidated in detail. The nanohybrids exhibit significantly enhanced Raman scattering and photothermal conversion efficiency, properties that are essential for potential multi-modal cancer treatment applications.
关键词: Surface Enhanced Raman Scattering,Gold Nanoparticles,Photothermal Conversion,Carbon Nanotubes,Plasma Synthesis
更新于2025-11-19 16:56:35
-
Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process
摘要: We presented a simple and efficient strategy for deposition of gold nanoparticles (AuNPs) upon transparent bare and indium tin oxide (ITO) film coated glass substrate using gold colloids as Au sources. The method involved two steps: embedding in polyvinyl alcohol (PVA) film and annealing at high temperature. The AuNPs deposited on solid substrate because of migration and coalescence of gold at high temperature. The optical and structural properties of the AuNPs were characterised by UV-vis absorption spectra and scanning electron microscopy. The results indicate that the surface of AuNPs upon substrate was clean as annealing at 600 °C for 0.5 h. The size of AuNPs deposited on ITO glass increased with annealing time and volume of PVA-AuNPs. Meanwhile, the localised surface plasmon resonance peak of AuNPs deposited on substrate was also gradual red-shift. In addition, the size of AuNPs deposited on ITO substrate was larger than that on bare glass. This work provides a simple, low-cost and large-scale method for fabrication of substrate-based AuNPs, which is benefit for exploiting biosensors, photonic devices and optoelectronic devices.
关键词: thermal annealing,solid substrate,Gold nanoparticles,indium tin oxide film coated glass
更新于2025-11-19 16:56:35
-
LSPR Biosensing Approach for the Detection of Microtubule Nucleation
摘要: Microtubules are dynamic protein ?laments that are involved in a number of cellular processes. Here, we report the development of a novel localized surface plasmon resonance (LSPR) biosensing approach for investigating one aspect of microtubule dynamics that is not well understood, namely, nucleation. Using a modi?ed Mie theory with radially variable refractive index, we construct a theoretical model to describe the optical response of gold nanoparticles when microtubules form around them. The model predicts that the extinction maximum wavelength is sensitive to a change in the local refractive index induced by microtubule nucleation within a few tens of nanometers from the nanoparticle surface, but insensitive to a change in the refractive index outside this region caused by microtubule elongation. As a proof of concept to demonstrate that LSPR can be used for detecting microtubule nucleation experimentally, we induce spontaneous microtubule formation around gold nanoparticles by immobilizing tubulin subunits on the nanoparticles. We ?nd that, consistent with the theoretical model, there is a redshift in the extinction maximum wavelength upon the formation of short microtubules around the nanoparticles, but no signi?cant change in maximum wavelength when the microtubules are elongated. We also perform kinetic experiments and demonstrate that the maximum wavelength is sensitive to the microtubule nuclei assembly even when microtubules are too small to be detected from an optical density measurement.
关键词: localized surface plasmon resonance,optical biosensors,gold nanoparticles,microtubule nucleation
更新于2025-11-19 16:56:35
-
Opposite changing dual-emission luminescence of gold nanoparticles by sulfhydryl to develop a pesticide biosensing strategy
摘要: As the merit of ratiometric assay is impregnable due to potentially interfering processes, a ratiometric method for pesticide detection was developed. By adjusting glutathione : HAuCl4 to an appropriate ratio, dual-emission luminescent ultra-small gold nanoparticles (AuNPs) with a high emission at 800 nm and a low emission at 600 nm were synthesized. Interestingly, the sulfhydryl-containing compounds were found to result in completely opposite changes to strengthen the 600 nm emission and weaken the 800 nm emission. Therefore, dual-emitted AuNPs were engaged to develop a ratiometric pesticide biosensing strategy. In the presence of acetylcholinesterase (AChE), acetylthiocholine can be hydrolyzed into thiocholine, whose newly generated sulfhydryl can interact with AuNPs, resulting in the opposite change of the dual emissions. While adding pesticide as an AChE inhibitor, the catalytic activity of AChE is inhibited and less thiocholine was produced. The biosensing system shows an obvious sensitivity to the pesticide with a limit of detection (LOD) of 0.2 nM for aldicarb and 0.07 nM for chlorpyrifos. Therefore, this simple assay is suitable for AChE activity and pesticide detection, even in vegetable samples.
关键词: sulfhydryl,ratiometric assay,gold nanoparticles,AChE activity,biosensing,pesticide detection
更新于2025-11-19 16:56:35
-
Effect of conduction band potential on cocatalyst-free plasmonic H <sub/>2</sub> evolution over Au loaded on Sr <sup>2+</sup> -doped CeO <sub/>2</sub>
摘要: There is little information on the effect of the conduction band (CB) position on plasmonic hydrogen (H2) formation under visible light irradiation over gold (Au) nanoparticles supported on semiconductors because there were no appropriate materials for which the CB position gradually changes. In this study, we analyzed the flatband potential of strontium ion (Sr2+)-doped cerium(IV) oxide (CeO2:Sr) and found that the CB position gradually shifted negatively from +0.031 V to ?1.49 V vs. NHE with an increase in the Sr2+ mole fraction. Plasmonic photocatalysts consisting of Au nanoparticles, CeO2:Sr and a platinum (Pt) cocatalyst were prepared and characterized by using X-ray diffraction, UV-vis spectroscopy, and transmission electron spectroscopy. Photocatalytic reaction under visible light irradiation revealed that H2 was produced over Au nanoparticles supported on CeO2:Sr having the CB potential of ?0.61 V vs. NHE and that the negative limit of the CB position for electron injection from Au nanoparticles existed between ?0.61 V and ?1.49 V vs. NHE. We found that Au/CeO2:Sr plasmonic photocatalysts also produced H2 without the aid of a Pt cocatalyst due to the sufficiently negative potential of electrons injected into the CB of CeO2:Sr.
关键词: hydrogen evolution,visible light irradiation,gold nanoparticles,plasmonic photocatalysts,strontium-doped cerium oxide
更新于2025-11-19 16:51:07