修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes

    摘要: Stability of conductive ink and mechanical ?exibility of conductive pattern are essential for ?exible printed electronics. In this work, we reported a stable reactive silver ink for the facile fabrication of ?exible electrodes. The ink was mainly composed of silver-isopropanolamine (IPA) complex, formic acid reductant, and hydroxyethyl cellulose (HEC) adhesive agent, and it displayed good chemical stability. The ?exible electrodes on polyimide (PI) substrates were achieved by mask-printing and thermal sintering of the ink, and the e?ects of sintering parameters and HEC adhesive agent content on the electrical and ?exible properties and microstructure evolutions of silver layer were systematically investigated. Consequently, the silver layer sintered at 110 °C yields low electrical resistivity of 12.1 μΩ·cm, which is only eight times higher than that of bulk silver. Furthermore, the sintered silver layer still presents excellent ?exibility and low relative resistances after the bending, twisting, and folding tests. These results demonstrate that the stable reactive silver ink provides a promising and low cost opportunity for low temperature design and fabrication of high performance ?exible printed electronics.

    关键词: Reactive silver ink,High conductivity,Silver layer,Flexibility,Printed electronics

    更新于2025-09-23 15:23:52

  • Laser-Scribed Graphene Electrodes Derived from Lignin for Biochemical Sensing

    摘要: Laser scribing of porous graphene electrodes on flexible substrates is of great interest for developing disposable electrochemical biosensors. In this work, we present a new patterning process for highly conductive nitrogen-doped graphene derived from a lignin-based precursor. A CO2 laser scribing process was performed under ambient conditions to produce the porous graphene electrodes from lignin. The obtained nitrogen-doped laser-scribed graphene (N-LSG) is binder-free, hierarchical, and conductive. The interconnected carbon network displayed enhanced electrochemical activity with improved heterogeneous electron transfer rate. These features can be attributed to the high-conductivity of porous N-LSG (down to 2.8 ? per square) and its enriched active edge plane sites. Furthermore, the N-LSG electrodes were decorated with MXene/Prussian Blue (Ti3C2Tx/PB) composite via a simple spray coating process, designed for sensitive detection of analytes. The Ti3C2Tx/PB modified N-LSG electrodes were functionalized with catalytic enzymes for detecting glucose, lactate, and alcohol. The enzyme/Ti3C2Tx/PB/N-LSG electrodes exhibited remarkably enhanced electrochemical activity toward the detection of these biomarkers, making them highly competitive with previously reported on-chip carbon-based biosensors. Therefore, our sensors demonstrate excellent potential for applications in personalized healthcare.

    关键词: laser-scribed graphene,MXene,alcohol,lactate,glucose,lignosulfonate,biosensor,high conductivity

    更新于2025-09-12 10:27:22

  • A Room-Temperature High-Conductivity Metal Printing Paradigm with Visible-Light Projection Lithography

    摘要: Fabricating electronic devices require integrating metallic conductors and polymeric insulators in complex structures. Current metal-patterning methods such as evaporation and laser sintering require vacuum, multistep processes, and high temperature during sintering or postannealing to achieve desirable electrical conductivity, which damages low-temperature polymer substrates. Here reports a facile ecofriendly room-temperature metal printing paradigm using visible-light projection lithography. With a particle-free reactive silver ink, photoinduced redox reaction occurs to form metallic silver within designed illuminated regions through a digital mask on substrate with insignificant temperature change (<4 °C). The patterns exhibit remarkably high conductivity achievable at room temperature (2.4 × 107 S m?1, ≈40% of bulk silver conductivity) after simple room-temperature chemical annealing for 1–2 s. The finest silver trace produced reaches 15 μm. Neither extra thermal energy input nor physical mask is required for the entire fabrication process. Metal patterns were printed on various substrates, including polyethylene terephthalate, polydimethylsiloxane, polyimide, Scotch tape, print paper, Si wafer, glass coverslip, and polystyrene. By changing inks, this paradigm can be extended to print various metals and metal–polymer hybrid structures. This method greatly simplifies the metal-patterning process and expands printability and substrate materials, showing huge potential in fabricating microelectronics with one system.

    关键词: hybrid material printing,metal patterning,high conductivity,flexible electronics,room-temperature printing

    更新于2025-09-10 09:29:36