- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
In Situ Enzyme Immobilization with Oxygen‐Sensitive Luminescent Metal–Organic Frameworks to Realize “All‐in‐One” Multifunctions
摘要: Metal-organic frameworks (MOFs) for enzyme immobilization have already shown superior tunable and designable characteristics, however, their devisable responsive properties have rarely been exploited. Herein, we integrated a responsive MOF into MOF-enzyme composite to propose an “all-in-one” multifunctional composite with catalytic and luminescence functions implemented within a single particle. As a proof-of-concept, glucose oxidase (GOx) was in situ encapsulated within an oxygen (O2)-sensitive, noble-metal-free luminescent Cu(I) triazolate framework (MAF-2), namely GOx@MAF-2. Owing to the rigid scaffold of MAF-2 and the confinement effect, the GOx@MAF-2 composite showed significantly improved stability (shelf life to 60 days and heat-resistance up to 80 oC) with good selectivity and recyclability. More importantly, the integration of the O2-sensitivity of MAF-2 allowed the GOx@MAF-2 composite rapidly and reversibly response toward dissolved O2, which realized direct and ratiometric sensing of glucose without the needs of chromogenic substrates, cascade enzymatic reactions or electrode system. A high sensitivity with a detection limit of 1.4 μM glucose was achieved, and the glucose in human sera was accurately determined. The strategy opens a new application of MOFs and can be facilely extended to various MOF-enzyme composites due to the multifunctionality of MOFs.
关键词: enzyme immobilization,metal-organic frameworks,all-in-one multifunctions,glucose detection,fluorometric sensor
更新于2025-11-21 11:08:12
-
Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy
摘要: The design of hybrid metal-organic framework (MOF) nanomaterials by integrating inorganic nanoparticle into MOF (NP@MOF) has demonstrated outstanding potential for obtaining enhanced, collective, and extended novel physiochemical properties. However, the reverse structure of MOF-integrated inorganic nanoparticle (MOF@NP) with multifunction has rarely been reported. Methods: We developed a facile in-situ growth method to integrate MOF nanoparticle into inorganic nanomaterial and designed a fluorescence switch to trigger enhanced photodynamic therapy. The influence of “switch” on the photodynamic activity was studied in vitro. The in vivo mice with tumor model was applied to evaluate the “switch”-triggered enhanced photodynamic therapy efficacy. Results: A core-satellites structure with fluorescence off and on function was obtained when growing MnO2 on the surface of fluorescent zeolitic imidazolate framework (ZIF-8) nanoparticles. Furthermore, A core-shell structure with photodynamic activity off and on function was achieved by growing MnO2 on the surface of porphyrinic ZrMOF nanoparticles (ZrMOF@MnO2). Both the fluorescence and photodynamic activities can be turned off by MnO2 and turned on by GSH. The GSH-responsive activation of photodynamic activity of ZrMOF@MnO2 significantly depleted the intracellular GSH via a MnO2 reduction reaction, thus triggering an enhanced photodynamic therapy efficacy. Finally, the GSH-reduced Mn2+ provided a platform for magnetic resonance imaging-guided tumor therapy. Conclusion: This work highlights the impact of inorganic nanomaterial on the MOF properties and provides insight to the rational design of multifunctional MOF-inorganic nanomaterial complexes.
关键词: Core-shell structure,Metal-organic frameworks,Fluorescence switch,Photodynamic therapy
更新于2025-11-21 11:08:12
-
An AND logic gate-based fluorescence probe for the detection of homovanillic acid, an indicator of the tumor
摘要: Homovanillic acid (HVA) is one of the major metabolites of catecholamine in human. An elevated level of HVA in urine and blood has been associated with many diseases, including catecholamine-secreting tumors. Consequently, detection of the biomarker HVA in urine is an effective strategy to detect cancer precursors and early stage cancers. In this study, a fluorescence probe is designed and fabricated by integrating lanthanide ions with metal-organic frameworks (MOFs). The fluorescence probe shows distinguished response toward HVA and exhibits ratiometric detection of HVA, rendering it an excellent candidate for sensing devices. Thus, we have designed logic gate operation integrating the probe with logical operations for the intelligent sensing of HVA. Furthermore, this type of luminesce based sensors integrated with logic gate augur for the further application in real-time early diagnosis of tumors in the future.
关键词: Rare earth,Homovanillic acid,Fluorescent probe,Logic gate,Ratiometric sensing,Metal-organic frameworks
更新于2025-11-19 16:56:35
-
Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores
摘要: The design and synthesis of sensitive and selective luminescent materials as chemical sensing agents is a fundamental goal in fluorescence assays. Considering high porosity, large surface area, excellent photoluminescence property of metal-organic frameworks (MOFs), luminescent properties of a microporous azine-functionalized MOF, TMU-16, dispersed in different metal ions and solvents have been investigated systematically. The TMU-16 displays superb luminescence emission, and it can detect Fe(III) and Cd(II) ions with high selectivity, excellent sensitivity, and short response time (<1 min). The emission intensities of TMU-16 were quenched upon the addition of Fe3+ and increased upon the addition of Cd2+. The detection limits of TMU-16 for Fe3+/Cd2+ in DMF are estimated to be 0.2 and 0.5 μM, respectively. The effect of other metal ions on the fluorescence intensity of the MOF was also studied and other metal ions showed low interference response in recognition of Fe3+ and Cd2+. Furthermore, TMU-16 exhibits distinct solvent-dependent luminescent spectra with emission intensity significantly enhanced toward dichloromethane. More importantly, this is the first example of MOF-based luminescent sensor as efficient multifunctional fluorescence material which can use for selective sensing of Fe(III) and Cd(II) ions and small molecules such as CH2Cl2.
关键词: Small molecules,Metal ions,Luminescent,Sensing,Metal-organic frameworks,Detection
更新于2025-11-19 16:46:39
-
A Luminescent Metal-Organic Framework with Pre-Designed Functionalized Ligands as an Efficient Fluorescence Sensing for Fe3+ Ions
摘要: Metal-organic frameworks are a class of attractive materials for fluorescent sensing. Here, we report the exploration of fluorescent Zn-based amine/azine-functionalized MOF, TMU-17-NH2, ([Zn(NH2-BDC)(4-bpdb)].2DMF; NH2-BDC = amino-1,4-benzenedicarboxylic acid, 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-2,3-butadiene) for highly selective and sensitive detection of Fe3+ in DMF solution. TMU-17-NH2 shows fast recognition of Fe3+ ion with a response time of <1 min and detection limit of 0.7 μM (40 ppb), and the luminescence is completely quenched in 10-3 M DMF solution of Fe3+. Furthermore, the static quenching constant is calculated to be upper than 41000 M-1 by the fluorescence titration experiment in low concentration of Fe3+. No interferences from 250 μM As3+, Cd2+, Zn2+, Co3+, Ni2+, Cu2+, Pb2+, Mn2+ and Al3+ were found for the detection of Fe3+. The efficient fluorescent quenching effect is attributed to the photoinduced electron transfer between Fe3+ ions and the amino-functionalized ligand in this MOF. Moreover, the introduced azine N donors in the 4-bpdb ligand of TMU-17-NH2 additionally donate their lone-pair electrons to the Fe3+ ions, leading to significantly enhanced detection ability. Furthermore, the regenerated TMU-17-NH2 still has high selectivity for Fe3+ ions, which suggests that the functionalized TMU-17-NH2 is a promising luminescent probe for selectively sensing of Fe3+ ions.
关键词: Metal-Organic Frameworks,Sensing,Fluorescence,Functionalization,Fe3+
更新于2025-11-19 16:46:39
-
Electron Transport Improvement of Perovskite Solar Cell via ZIF-8 Derived Porous Carbon Skeleton
摘要: To improve electron transport rate of perovskite solar cell, ZIF-8 derived porous carbon skeleton layer is prepared by carbonizing the ZIF-8 thin film on conducting glass as the electron transport skeleton of perovskite solar cell. Polyvinyl pyrrolidone is added during the synthesis of ZIF-8 to reduce the particle size of ZIF-8 and decrease the carbonization temperature below 600°C. The porous structure of ZIF-8 is mainly reserved at the optimized carbonization temperature. Then TiO2 nanoparticles are deposited on the surface of porous carbon skeleton to form an electron transport layer of perovskite solar cell with the structure of FTO/ZIF-8 derived porous carbon layer/TiO2/Perovskite/Spiro-OMeTAD/Au. Due to the good conductivity of the ZIF-8 derived porous carbon skeleton, the photogenerated electron transport rate of perovskite solar cell is increased. At the same time, the porous structure of ZIF-8 derived carbon layer increases the contact area between the perovskite layer and the TiO2 layer to favor separation of photogenerated charges. Therefore, the light-to-electric conversion efficiency of CH3NH3PbI3 perovskite solar cell is enhanced from 14.25% to 17.32%.
关键词: Electron transport,Increase of contact area,Porous carbon skeleton,Good conductivity,Polyvinyl pyrrolidone,Perovskite solar cell,Metal organic frameworks
更新于2025-11-14 17:04:02
-
Metal–organic framework-derived ZnO hollow nanocages functionalized with nanoscale Ag catalysts for enhanced ethanol sensing properties
摘要: Increase of porosity and functionalization with nanoscale catalysts are two significant aspects for achieving high-performance metal oxide-based resistive gas sensors. In this work, a simple metal–organic framework (MOF) route has been developed to fabricate Ag nanocatalysts functionalized ZnO hollow nanocages (NCs). Nanoscale Ag catalysts with a small size of approximately 10 nm are uniformly encapsulated within the cavities of MOFs (ZIF-8). The high porosity, hollow structure, and functionalization with uniformly-distributed nanoscale Ag catalysts have been simultaneously achieved for MOF-derived ZnO. This type of porous Ag–ZnO hollow NCs show much enhanced ethanol sensing performances and reduced operating temperature in comparison with pure ZnO nanoparticles (NPs) and ZnO NCs. In particular, the 1 ml Ag–ZnO NCs exhibit the highest response of 84.6 to 100 ppm ethanol at 250 °C, which is 6.4 and 3.3 times higher than those of pure ZnO NPs and ZnO NCs at the optimum operating temperature of 275 °C, respectively. The Ag–ZnO NCs also display fast response/recovery times, good ethanol selectivity, and response reproducibility. The enhanced ethanol sensing properties are attributed to the synergistic effects of several points including the electron sensitization effects and catalytic effects of nanoscale Ag catalysts, porous and hollow structures, high surface area, and high surface O? species absorbing capability of Ag–ZnO NCs.
关键词: ZnO,Gas sensors,Metal–organic frameworks,Ag,Hollow
更新于2025-11-14 17:03:37
-
Synthesis, crystal structure and fluorescent sensing property of metal-organic frameworks with 1,3-di(1H-imidazol-4-yl)benzene and 1,4-phenylenediacetate
摘要: In this work, two new metal–organic frameworks (MOFs) based on 1,3-di(1H-imidazol-4-yl)benzene (L) and 1,4-phenylenediacetic acid (H2pda), namely [Ni(L)(pda)(H2O)] (1) and [Cd(L)(pda)] (2), have been achieved. MOFs 1 and 2 have distinct infinite one-dimensional (1D) chain structures, which are further linked together by hydrogen bonding interactions to give the eventual three-dimensional (3D) supramolecular architectures. Photoluminescence studies revealed that the Cd(II) MOF 2 shows strong emission at 346 nm upon excitation at 308 nm at room temperature. Furthermore, 2 can efficiently detecting acetone molecules, and Fe3+ and Cr2O7 2- ions via fluorescent quenching.
关键词: Acetone,Ions,Metal-organic frameworks,Detection,Luminescence
更新于2025-11-14 15:18:02
-
Complementary Chromophore Decoration in NU-1000 via Solvent-Assisted Ligands Incorporation: Efficient Energy Transfer within the Metal-Organic Frameworks
摘要: BODIPY-incorporated solvent-assisted ligand incorporation metal-organic frameworks (SALI-MOFs) were designed and synthesized using NU-1000 and carboxylic acid functionalized BODIPY moieties by the solvent-assisted ligand incorporation (SALI) approach. SALI-MOFs were characterized by various technique including powder X-ray diffraction, scanning electron microscope, N2 adsorption/desorption isotherms, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The SALI-MOFs were found to have cooperative light-harvesting properties and shown to possess efficient singlet oxygen (1O2) generation ability.
关键词: Light-harvesting properties,Singlet oxygen,Metal-organic frameworks,Solvent-assisted ligands incorporation,Energy transfer,BODIPY
更新于2025-11-14 15:14:40
-
Coating of 2D Flexible Metal–Organic Frameworks on Metal Nanocrystals
摘要: We report, for the first time, metal (Pd) nanocrystals (NCs) covered with a 2D flexible metal–organic framework (MOF) of [Zn(NO2-ip)(bpy)]n (NO2-ip: 5-nitro-isophthalate, bpy: 4,4′-bipyridine). The hybrid materials were characterized by powder X-ray diffraction measurements and transmission electron microscope techniques. The CO2 sorption and hydrogen storage properties revealed that both the flexible porous character of the MOF and the hydrogen absorption ability of Pd NCs were compatible in the hybrid.
关键词: Gate-opening behavior,Metal–organic frameworks,Metal nanocrystals
更新于2025-09-23 15:23:52