- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies
摘要: A rapid, facile and label-free sensing strategy is developed for the detection of dopamine (DA) in the real samples by exploiting nitrogen-doped graphene quantum dots (N-GQDs) decorated on Au nanoparticles (Au@N-GQD). The as-grown Au@N-GQD exhibits strong blue fluorescence at room temperature and the fluorescence intensity is drastically quenched in presence of DA in neutral medium. The mechanistic insight into the DA sensing by Au@N-GQDs is explored here by careful monitoring of the evolution of the interaction of Au NPs and N-GQDs with DA under different conditions through electron microscopic and spectroscopic studies. The highly sensitive and selective detection of DA over a wide range is attributed to the unique core-shell structure formation with Au@N-GQD hybrids. The quenching mechanism involves the ground state complex formation as well as electron transfer from N-GQDs. The presence of Au NPs in Au@N-GQD hybrids accelerates the quenching process (~14 fold higher than bare N-GQDs) by the formation of stable dopamine-o-quinone (DQ) in this present detection scheme. The fluorescence quenching follows the linear Stern-Volmer plot in the range 0-100 μM, establishing its efficacy as a fluorescence-based DA sensor with a limit of detection (LOD) 590 nM, which is ~27 fold lower than the lowest abnormal concentration of DA in serum (16 μM). This sensing scheme is also successively applied to trace DA in Brahmaputra river water sample with LOD 480 nM including its satisfactory recovery (95-112%). Our studies reveal a novel sensing pathway for DA through the core-shell structure formation and it is highly promising for the design of efficient biological and environmental sensor.
关键词: Dopamine,Fluorescence quenching,Nitrogen-doped graphene quantum dots,Colorimetric sensing,Core-shell structure,Gold nanoparticles
更新于2025-11-21 11:01:37
-
Effects of Sn doping on the optoelectronic properties of reactively evaporated In4Se3 thin films
摘要: Polycrystalline In4Se3: Sn thin films are prepared on glass substrate by reactive evaporation under a vacuum of 10?5 mbar. The characterizations of the samples are done using XRD, FESEM, XPS and UV-Vis-NIR spectrophotometer. The optical band gap shift of the sample, above the carrier concentration of 1.833 × 1017 cm?3, is well described by Burstein-Moss model. The resistivity of the samples is found to decrease as a result of Sn incorporation. Our results show that in all samples, impurity scattering and lattice vibration scattering are the main factors affecting the electrical properties. Photoconductivity studies at room temperature show that visible photoresponsivity of the films increases with increase in Sn concentration. These improvements in optoelectronic properties facilitate the usefulness of such films in device applications.
关键词: Sn doped In4Se3 thin films,Reactive evaporation,Burstein-moss effect
更新于2025-11-21 11:01:37
-
Fabrication of Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance
摘要: SrTiO3 as semiconducting photocatalyst has been extensively investigated due to its band edges meeting the thermodynamic requirements for water splitting, but a few attention has been concentrated on its application in the NH3 synthesis via N2 photofixation process. Herein, Fe-doped SrTiO3 (FexSr1-xTiO3) products (0 ≤ x ≤ 0.20) were synthesized via a hydrothermal process followed by calcination at 700oC. All FexSr1-xTiO3 products (0.03 ≤ x ≤ 0.20) deliver an enhanced N2 fixation ability, and FexSr1-xTiO3 (x = 0.10) achieves the best NH3 production activity of 30.1 μmol g-1 h-1, which is 3.2-hold higher than that of SrTiO3 alone. Once the x value is higher than 0.10, FexSr1-xTiO3 will transform into composites containing Fe-doped SrTiO3 and α-Fe2O3, which acts as charge recombination sites, thus causes a decreased N2 fixation activity. Further investigations demonstrate that the surface Fe3+-doped sites can not only chemisorb and activate N2 molecules, but also promote the interfacial electron transfer from Fe-doped SrTiO3 to N2 molecules, and thus significantly improve the N2 fixation ability. The present Fe-doped SrTiO3 products exhibit characteristic features such as stable and efficient N2 fixation ability as well as simultaneous realization of N2 reduction and H2O oxidation without co-catalyst, which are of significance in artificial photosynthesis with H2O as electron and proton sources.
关键词: Photocatalysis,Fe-doped SrTiO3,Dinitrogen photofixation,N2 molecule activation
更新于2025-11-21 11:01:37
-
P‐type Sb‐doped Cu <sub/>2</sub> O Hole Injection Layer Integrated on Transparent ITO Electrode for Acidic PEDOT:PSS‐Free Quantum Dot Light Emitting Diodes
摘要: It is developed that transparent p-type Sb-doped cuprous oxide (ACO) integrated Sn-doped In2O3 (ITO) film as hole injection layer (HIL) and anode combined electrodes for quantum dot light emitting diodes (QD-LEDs) to substitute acidic PEDOT:PSS HIL based electrode. By graded co-sputtering of ACO and ITO targets, the graded p-type ACO buffer layer can be integrated on the surface region of the ITO electrodes. P-type conductivity of the ACO film for acting as effective HIL in QD-LEDs is confirmed by a positive Hall coefficient (1.74 (cid:1) 10 (cid:3)1). Due to the well-matched work function of p-type ACO on the ITO electrodes, the acidic PEDOT:PSS-free QD-LEDs exhibited typical current-voltage-luminescence of QD-LEDs. The successful operation of PEDOT:PSS-free QD-LED with p-type ACO integrated ITO electrode indicates that ACO and ITO anode graded sputtering is simpler fabrication steps for cost-effective QD-LEDs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable QD-LEDs.
关键词: Sn-doped In2O3,acidic PEDOT:PSS,hole injection layer,p-type conductivity,Sb-doped Cu2O,quantum dots light emitting diodes
更新于2025-11-21 10:59:37
-
Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells
摘要: We report on a simple and efficient process to enhance the performance of perovskite solar cells by using ITO electrodes with a nanoporous surface formed by wet-etching of self-agglomerated Ag nanoparticles. Effective removal of the Ag nanoparticles embedded in the surface of the ITO electrodes result in a nanoporous structure without changing the ITO's sheet resistance (10.17 Ω/square) and optical transmittance (89.08%) at a 550 nm wavelength. Examinations with a scanning electron microscope, a transmission electron microscope, and two-dimensional porous mapping show that the nanoporous ITO surface has an increased contact area with the electron transport layer, which enhanced the carrier extraction efficiency of the perovskite solar cells. Compare to perovskite solar cells fabricated on typical ITO with a flat surface morphology, the perovskite solar cells fabricated on the nanoporous-surface ITO show a higher fill factor of 81.1% and a power conversion efficiency of 20.1%. These results indicate that modified ITO surfaces with nano-scale porosity provide a simple and efficient method to improve the power conversion efficiency of perovskite solar cells without a complicated process.
关键词: Contact area,Nanoporous surface,Sn-doped In2O3,Ag agglomeration,Perovskite solar cells
更新于2025-11-21 10:59:37
-
Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications
摘要: In this work, we utilize a bottom-up approach to synthesize nitrogen self-doped graphene quantum dots (NGQDs) from a single glucosamine precursor via an eco-friendly microwave-assisted hydrothermal method. Structural and optical properties of as-produced NGQDs are further modified using controlled ozone treatment. Ozone-treated NGQDs (Oz-NGQDs) are reduced in size to 5.5 nm with clear changes in the lattice structure and ID/IG Raman ratios due to the introduction/alteration of oxygen-containing functional groups detected by Fourier-transform infrared (FTIR) spectrometer and further verified by energy dispersive X-ray spectroscopy (EDX) showing increased atomic/weight percentage of oxygen atoms. Along with structural modifications, GQDs experience decrease in ultraviolet–visible (UV–vis) absorption coupled with progressive enhancement of visible (up to 16 min treatment) and near-infrared (NIR) (up to 45 min treatment) fluorescence. This allows fine-tuning optical properties of NGQDs for solar cell applications yielding controlled emission increase, while controlled emission quenching was achieved by either blue laser or thermal treatment. Optimized Oz-NGQDs were further used to form a photoactive layer of solar cells with a maximum efficiency of 2.64% providing a 6-fold enhancement over untreated NGQD devices and a 3-fold increase in fill factor/current density. This study suggests simple routes to alter and optimize optical properties of scalably produced NGQDs to boost the photovoltaic performance of solar cells.
关键词: photovoltaics,optical properties,ozone treatment,nitrogen-doped graphene quantum dots,solar cells
更新于2025-11-19 16:56:42
-
A bipolar deep blue-emitting fluorescent material based on imidazole and triphenylamine for efficient non-doped OLEDs
摘要: A bipolar deep blue-emitting fluorescent material, 1-(4-tert-butyl phenyl)-2-[4-(N,N- diphenyl)phenyl]-4,5-diphenyl-1H-imidazole (TPA-PIM) has been designed and synthesized for efficient blue organic light-emitting diodes (OLEDs). The photophysical, thermal and electrochemical properties of TPA-PIM are investigated. TPA-PIM possesses high thermal stabilities with decomposition temperature of 396 °C and shows a strong deep-blue emission at 407 nm in N, N-dimethylformamide (DMF) solution. Single-carrier devices are fabricated to show that TPA-PIM has good bipolar characteristics. The non-doped fluorescent OLEDs using TPA-PIM as emitter exhibited stable and efficient deep-blue emissions with the CIE coordinates of (0.16, 0.09), the maximum luminance of 1392 cd m?2 and the maximum current efficiency of 2.60 cd A?1.
关键词: Triphenylamine,Blue light-emitting materials,Bipolar materials,Imidazole,Non-doped OLEDs
更新于2025-11-19 16:56:42
-
Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties
摘要: In this report we will present completely new results on the improvement of the graphene quantum dots (GQDs) and nitrogen-doped graphene quantum dots (N-GQD) production method, using the microwave with different power levels and durations, from citric acid and urea. This is a new and unprecedented method of fabrication. The use of microwave has allowed ultra-fast fabrication of GQDs and nitrogen doped GQDs. These GQDs had their characteristics identi?ed by Raman scattering spectra for the characteristic C–C graphene vibration mode (G-peak) and defects of GQDs (D-peak). The absorption spectra of GQDs samples were fabricated under different conditions, with the expectation of different sizes, to be compared and analyzed. These absorption spectra were also compared with those of the N-GQD produced under the same conditions. The absorption mechanism of GQDs and N-GQD will be presented in detail. Measurements of the photoluminescence (PL) spectra in GQDs and N-GQD have also been recorded and analyzed. The ?uorescence mechanism will be presented, explained, and compared with other international publications of other authors. Some of the TEM and HR-TEM images of these two samples were also presented to con?rm the shape, size and in-plane spacing lattice of the GQD structure.
关键词: graphene quantum dots (GQDs),PL spectra,nitrogen-doped graphene quantum dots (N-GQD),microwave,Raman spectra,absorption spectra
更新于2025-11-19 16:56:42
-
Effect of conduction band potential on cocatalyst-free plasmonic H <sub/>2</sub> evolution over Au loaded on Sr <sup>2+</sup> -doped CeO <sub/>2</sub>
摘要: There is little information on the effect of the conduction band (CB) position on plasmonic hydrogen (H2) formation under visible light irradiation over gold (Au) nanoparticles supported on semiconductors because there were no appropriate materials for which the CB position gradually changes. In this study, we analyzed the flatband potential of strontium ion (Sr2+)-doped cerium(IV) oxide (CeO2:Sr) and found that the CB position gradually shifted negatively from +0.031 V to ?1.49 V vs. NHE with an increase in the Sr2+ mole fraction. Plasmonic photocatalysts consisting of Au nanoparticles, CeO2:Sr and a platinum (Pt) cocatalyst were prepared and characterized by using X-ray diffraction, UV-vis spectroscopy, and transmission electron spectroscopy. Photocatalytic reaction under visible light irradiation revealed that H2 was produced over Au nanoparticles supported on CeO2:Sr having the CB potential of ?0.61 V vs. NHE and that the negative limit of the CB position for electron injection from Au nanoparticles existed between ?0.61 V and ?1.49 V vs. NHE. We found that Au/CeO2:Sr plasmonic photocatalysts also produced H2 without the aid of a Pt cocatalyst due to the sufficiently negative potential of electrons injected into the CB of CeO2:Sr.
关键词: hydrogen evolution,visible light irradiation,gold nanoparticles,plasmonic photocatalysts,strontium-doped cerium oxide
更新于2025-11-19 16:51:07
-
Multifunctional N,S co-doped carbon dots for sensitive probing of temperature, ferric ion, and methotrexate
摘要: In this paper, we have presented a facile method to fabricate nitrogen and sulfur co-doped carbon dots (N,S-CDs) for blood methotrexate (MTX) sensing applications. The N,S-CDs with quantum yield up to 75% were obtained by one-step hydrothermal carbonization, using reduced glutathione and citric acid as the precursors. With this approach, the formation and the surface passivation of N,S-CDs were carried out simultaneously, resulting in intrinsic fluorescence emission. Owing to their pronounced temperature dependence of the fluorescence emission spectra, resultant N,S-CDs can work as versatile nanothermometry devices by taking advantage of the temperature sensitivity of their emission intensity. In addition, the obtained N,S-CDs facilitated high selectivity detection of Fe3+ ions with a detection limit as low as 0.31 μM and a wide linear range from 3.33 to 99.90 μM. More importantly, the added MTX selectively led to the fluorescence quenching of the N,S-CDs. Such fluorescence responses were used for well quantifying MTX in the range of 2.93 to 117.40 μM, and the detection limit was down to 0.95 μM. Due to Binert^ surface, the N,S-CDs well resisted the interferences from various biomolecules and exhibited excellent selectivity. The proposed sensing system was successfully used for the assay of MTX in human plasma. Due to simplicity, sensitivity, selectivity, and low cost, it exhibits great promise as a practical platform for MTX sensing in biological samples.
关键词: Hydrothermal carbonization,Doped carbon dots,Excitation-independent emission,Multifunctional probe,Methotrexate,Surface passivation
更新于2025-11-19 16:46:39