修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

128 条数据
?? 中文(中国)
  • Photoacoustic and fluorescent effects in multilayer plasmon-dye interfaces

    摘要: Progress in understanding the cell biology and progression of disease depends on advanced imaging and labeling techniques. Here, we address this demand by exploring novel multilayered nanocomposites (MNCs) with plasmonic nanoparticles and adsorbing dyes in thin nonabsorbing shells as supercontrast multimodal photoacoustic (PA) and fluorescent agents in the near-infrared range. The proof of concept was performed with gold nanorods (GNRs) and indocyanine green (ICG) dispersed in a matrix of biodegradable polymers. We demonstrated synergetic PA effects in MNCs with the gold–ICG interface that could not be achieved with ICG and GNRs alone. We also observed ultrasharp PA and emission peaks that could be associated with nonlinear PA and spaser effects, respectively. Low-toxicity multimodal MNCs with unique plasmonic, thermal, and acoustic properties have the potential to make a breakthrough in PA flow cytometry and near-infrared spasers in vivo by using the synergetic interaction of plasmonic modes with a nearby absorbing medium.

    关键词: gold nanorods,fluorescence,in vivo flow cytometry,biocompatible polymers,photoacoustic effect,indocyanine green,multilayer composite,fluorescence quenching

    更新于2025-09-10 09:29:36

  • Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound

    摘要: Intravascular photoacoustic-ultrasound (IVPA-US) imaging and near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) are two hybrid modalities that detect arterial lipid, with comparison necessary to understand the relative advantages of each. We performed in vivo and ex vivo IVPA-US imaging of the iliac arteries of Ossabaw swine with metabolic syndrome (MetS) and lean swine to investigate sensitivity for early-stage atherosclerosis. We repeated imaging ex vivo with NIRS-IVUS for comparison to IVPA-US and histology. Both modalities showed significantly greater lipid in MetS vs. lean swine, but only IVPA-US localized the lipid as perivascular. To investigate late-stage atherosclerosis, we performed ex vivo IVPA-US imaging of a human coronary artery with comparison to NIRS-IVUS and histology. Two advanced fibroatheromas were identified, with agreement between IVPA-measured lipid area and NIRS-derived lipid content. As confirmed histologically, IVPA-US has sensitivity to detect lipid content similar to NIRS-IVUS and provides additional depth resolution, enabling quantification and localization of lipid cores within plaques.

    关键词: Swine,Lipid core plaque,Near-infrared spectroscopy,Human,Intravascular imaging,Photoacoustic imaging,Atherosclerosis,Perivascular adipose tissue

    更新于2025-09-10 09:29:36

  • Assessing Hemorrhagic Shock: Feasibility of Using an Ultracompact Photoacoustic Microscope

    摘要: Hemorrhagic shock, as an important clinical issue, is regarding as a critical disease with a high mortality rate. Unfortunately, existing clinical technologies are inaccessible to assess the hemorrhagic shock via hemodynamics in microcirculation. Here, we propose an ultracompact photoacoustic microscope to assess hemorrhagic shock using a rat model and demonstrate its clinical feasibility by visualizing buccal microcirculation of healthy volunteers. Both functional and morphological features of the microvascular network including concentration of total hemoglobin (CHbT), number of blood vessels (VN), small vascular density (SVD) and vascular diameter (VD) were derived to assess the microvascular hemodynamics of different organs. Animal studies show the feasibility of the proposed tool to assess and stage the hemorrhagic shock via microcirculation. In vivo oral imaging of healthy volunteers indicates the translational possibility of this technique for clinical evaluation of hemorrhagic shock.

    关键词: clinical evaluation,photoacoustic microscopy,hemodynamics,hemorrhagic shock,microcirculation

    更新于2025-09-10 09:29:36

  • An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging

    摘要: The integration of intravascular ultrasound (IVUS) and intravascular photoacoustic (IVPA) imaging produces an imaging modality with high sensitivity and specificity which is particularly needed in interventional cardiology. Conventional side-looking IVUS imaging with a single-element ultrasound (US) transducer lacks forward-viewing capability, which limits the application of this imaging mode in intravascular intervention guidance, Doppler-based flow measurement, and visualization of nearly or totally blocked arteries. For both side-looking and forward-looking imaging, the necessity to mechanically scan the US transducer limits the imaging frame rate, and therefore array-based solutions are desired. In this paper, we present a low-cost, compact, high-speed, and programmable imaging system based on a field-programmable gate array (FPGA) suitable for dual-mode forward-looking IVUS/IVPA imaging. The system has 16 US transmit and receive channels and functions in multiple modes including interleaved photoacoustic (PA) and US imaging, hardware-based high-frame-rate US imaging, software-driven US imaging, and velocity measurement. The system is implemented in the register-transfer level, and the central system controller is implemented as a finite state machine. The system was tested with a capacitive micromachined ultrasonic transducer (CMUT) array. A 170-frames-per-second (FPS) US imaging frame rate is achieved in the hardware-based high-frame-rate US imaging mode while the interleaved PA and US imaging mode operates at a 60-FPS US and a laser-limited 20-FPS PA imaging frame rate. The performance of the system benefits from the flexibility and efficiency provided by low-level implementation. The resulting system provides a convenient backend platform for research and clinical IVPA and IVUS imaging.

    关键词: software/hardware co-design,velocity measurement,ultrasound imaging,Photoacoustic imaging,FPGA,data acquisition,finite state machine

    更新于2025-09-10 09:29:36

  • Optical and Photoacoustic Properties of Colloidal Silver Nanoparticles Solutions

    摘要: The study has aimed to investigate optical and photoacoustic properties of some colloidal silver nanoparticles at different concentration over the time. The phase purity with crystal structure of silver nanoparticles were studied using X-ray diffraction (XRD) and was confirmed by Transmission Electron Microscopy (TEM). Optical property was changed during the variable concentration of nanoparticles and duration time of sample. The absorbance of silver colloidal solutions is increased, when concentration increases but decreased with respective to the longer period of sample. Absorption peaks and stability of particles in solutions is influenced by the duration time of solution and its concentration. The low concentration-based solutions fall in the absorbance over the times. The observed PA signal is subjected by the factor of parameters; such as, pump wavelengths, energy, repetition rate, concentrations, and temperature. Stability of fluorescence and absorption peaks are influenced by the concentration of particles and time period of colloidal solution. Effects on PA signal with fluorescent and absorption peaks upon the concentration was also significant.

    关键词: silver nanoparticles,photoluminescence,photoacoustic,absorption

    更新于2025-09-10 09:29:36

  • Indocyanine Green labeling for optical and photoacoustic imaging of Mesenchymal Stem Cells after in vivo transplantation

    摘要: The transplantation of Mesenchymal Stem Cells (MSCs) holds great promise for the treatment of a plethora of human diseases, but new non-invasive procedures are needed to monitor the cell fate in vivo. Already largely used in medical diagnostics, the fluorescent dye Indocyanine Green (ICG) is an established dye to track limited numbers of cells by optical imaging, but it can be visualized also by Photoacoustic Imaging (PAI), which provides a higher spatial resolution than pure near infrared fluorescence imaging (NIRF). Because of its successful use in clinical and preclinical examinations, we chose ICG as PAI cell labeling agent. Optimal incubation conditions were defined for an efficient and clinically translatable MSC labeling protocol, such that no cytotoxicity or alterations of the phenotypic profile were observed, and a consistent intracellular uptake of the molecule was achieved. Suspensions of ICG-labeled cells were both optically and optoacoustically detected in vitro, revealing a certain variability in the photoacoustic spectra acquired by varying the excitation wavelength from 680 to 970 nm. Intramuscular engraftments of ICG-labeled MSCs were clearly visualized by both PAI and NIRF over few days after transplantation in the hindlimb of healthy mice, suggesting that the proposed technique retains a considerable potential in the field of transplantation-focused research and therapy.

    关键词: Indocyanine Green,Near Infrared Fluorescence Imaging,Photoacoustic Imaging,Cell tracking,Stem Cells

    更新于2025-09-10 09:29:36

  • Non-invasive dynamic assessment of conjunctival melanomas using photoacoustic imaging

    摘要: This study describes non-invasive photoacoustic imaging to detect and monitor the growth of conjunctival melanomas in vivo. Conjunctival melanomas were induced by injection of melanotic B16F10 cells into the subconjunctival space in syngeneic albino C57BL/6 mice. Non-invasive in vivo photoacoustic tomography was performed before, and after tumor induction up to 2 weeks. Spectral unmixing was performed to determine the location and to assess the distribution of melanin. The melanin photoacoustic signal intensity was quantified from the tumor-bearing and control eyes at all timepoints. For postmortem validation, total tumor and melanotic tumor volumes were measured using H&E stained tumor sections and were compared to in vivo photoacoustic imaging measurements. Photoacoustic imaging non-invasively detected eyes bearing conjunctival tumors of varying sizes. The melanin signal was detected as early as immediately following injection of melanotic tumor cells. Changes in tumor size over time were assessed with changes in the volume and intensity of the melanin signal. Four growing tumors and one regressing tumor were observed. Three tumors without significant change in signal intensity over time were observed, showing variable growth. Photoacoustic melanin signal on the last day of in vivo imaging correlated with postmortem total tumor volume (R2 = 0.81) and melanotic tumor volume (R2 = 0.80). The results of our study show that the growth of conjunctival melanomas can be quantified in a non-invasive manner using in vivo photoacoustic tomography. The photoacoustic melanin signal intensity correlated with total and melanotic tumor volume. This novel in vivo imaging platform may aid in assessing new treatment modalities to treat ocular tumors.

    关键词: near-infrared,mouse,melanin detection,photoacoustic imaging,oncology,in vivo,ocular melanoma

    更新于2025-09-10 09:29:36

  • In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration

    摘要: Carbon dots that exhibit near-infrared fluorescence (NIR CDs) are considered emerging nanomaterials for advanced biomedical applications with low toxicity and superior photostability and targeting compared to currently used photoluminescence agents. Despite progress in the synthesis of NIR CDs, there remains a key obstacle to using them as an in vivo theranostic agent. This work demonstrates that the newly developed sulfur and nitrogen codoped NIR CDs are highly efficient in photothermal therapy (PTT) in mouse models (conversion efficiency of 59%) and can be readily visualized by photoluminescence and photoacoustic imaging. The real theranostic potential of NIR CDs is enhanced by their unique biodistribution and targeting. Contrary to all other nanomaterials that have been tested in biomedicine, they are excreted through the body’s renal filtration system. Moreover, after intravenous injection, NIR CDs are accumulated in tumor tissue via passive targeting, without any active species such as antibodies. Due to their accumulation in tumor tissue without the need for intratumor injection, high photothermal conversion, excellent optical and photoacoustic imaging performance, and renal excretion, the developed CDs are suitable for transfer to clinical biomedical practice.

    关键词: Theranostics,Photoacoustic imaging,Carbon dots,Near-infrared fluorescence,Photothermal therapy

    更新于2025-09-10 09:29:36

  • Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound

    摘要: Medium-intensity focused ultrasound (MIFU) concerns therapeutic ultrasound interventions aimed at stimulating physiological mechanisms to reinforce healing responses without reaching temperatures that can cause permanent tissue damage. The therapeutic outcome is strongly affected by the temperature distribution in the treated region and its accurate monitoring represents an unmet clinical need. In this work, we investigate on the capacities of four-dimensional optoacoustic tomography to monitor tissue heating with MIFU. Calibration experiments in a tissue-mimicking phantom have confirmed that the optoacoustically-estimated temperature variations accurately match the simultaneously acquired thermocouple readings. The performance of the suggested approach in real tissues was further shown with bovine muscle samples. Volumetric temperature maps were rendered in real time, allowing for dynamic monitoring of the ultrasound focal region, estimation of the peak temperature and the size of the heat-affected volume.

    关键词: photoacoustic imaging,thermal treatment monitoring,therapeutic ultrasound,temperature monitoring,optoacoustic tomography

    更新于2025-09-10 09:29:36

  • A Handheld Real-Time Photoacoustic Imaging System for Animal Neurological Disease Models: From Simulation to Realization

    摘要: This article provides a guide to design and build a handheld, real-time photoacoustic (PA) imaging system from simulation to realization for animal neurological disease models. A pulsed laser and array-based ultrasound (US) platform were utilized to develop the system for evaluating vascular functions in rats with focal ischemia or subcutaneous tumors. To optimize the laser light delivery, ?nite element (FE)-based simulation models were developed to provide information regarding light propagation and PA wave generation in soft tissues. Besides, simulations were also conducted to evaluate the ideal imaging resolution of the US system. As a result, a PA C-scan image of a designed phantom in 1% Lipofundin was reconstructed with depth information. Performance of the handheld PA system was tested in an animal ischemia model, which revealed that cerebral blood volume (CBV) changes at the cortical surface could be monitored immediately after ischemia induction. Another experiment on subcutaneous tumors showed the anomalous distribution of the total hemoglobin concentration (HbT) and oxygen saturation (SO2), while 3D and maximum intensity projection (MIP) PA images of the subcutaneous tumors are also presented in this article. Overall, this system shows promise for monitoring disease progression in vascular functional impairments.

    关键词: tumor,vascular function,stroke,photoacoustic imaging,neurological disease

    更新于2025-09-10 09:29:36