修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
研究主题
  • composite electrode
  • silver nanowire
  • reduced graphene oxide
  • zinc oxide
应用领域
  • Optoelectronic Information Materials and Devices
机构单位
  • China Jiliang University
  • Guangdong Poly-Optoelectronics Co.
351 条数据
?? 中文(中国)
  • A sustainable multi-function biomorphic material for pollution remediation or UV absorption: Aerosol assisted preparation of highly porous ZnO-based materials from cork templates

    摘要: For the first time, highly porous ZnO-based biomorphic materials were synthesised using cork as a natural sustainable template. In the first step, waste cork powder was pyrolysed and converted into inorganic carbon. This template was then infiltrated using a novel approach employing an aerosol of zinc-containing solutions. The infiltrated powders were calcined to convert the precursors into zinc oxide. Depending on temperature, these could form either a ZnO-graphite composite material, or pure ZnO. Their morphology, porosity, microstructure and composition were characterised; their optical band gap energies, ability to adsorb and photodegrade organic pollutants and UV absorption were also assessed. When heated to 350 oC they maintained the 3D porous cork structure, producing a graphite-containing composite material, with both physical adsorption and photocatalytic activity (Eg = 3.19 eV), suitable for environmental remediation. When heated to 700 oC, the powders were pure ZnO (no graphite), and they absorbed in the UV region, hence suitable for use as sunscreen. Doped ZnO ecoceramics were also produced, using silver and aluminium. An addition of 1 mol% Ag improved photocatalysis under solar light. Conversely, adding 2 mol% Al and calcining at 700 oC deactivated photocatalysis, but maintained strong UV absorption, producing a safer sunscreen material (no generation of free radicals). This is the first time that photocatalytic or UV absorption properties of any wood-derived biomorphic material or ecoceramic have been reported.

    关键词: sunscreen.,zinc oxide,biomorphic/ecoceramic,aerosol,photocatalyst

    更新于2025-10-22 19:40:53

  • Simulation of GaAs Nanowire Growth and Crystal Structure

    摘要: Growing GaAs nanowires with well defined crystal structures is a challenging task, but may be required for the fabrication of future devices. In terms of crystal phase selection, the connection between theory and experiment is limited, leaving experimentalists with a trial and error approach to achieve the desired crystal structures. In this work, we present a modelling approach designed to provide the missing connection, combining classical nucleation theory, stochastic simulation and mass transport through the seed particle. The main input parameters for the model are the flows of the growth species and the temperature of the process, giving the simulations the same flexibility as experimental growth. The output of the model can also be directly compared to experimental observables, such as crystal structure of each bilayer throughout the length of the nanowire and the composition of the seed particle. The model thus enables for observed experimental trends to be directly explored theoretically. Here, we use the model to simulate nanowire growth with varying As flows, and our results match experimental trends with good agreement. By analysing the data from our simulation, we find theoretical explanations for these experimental results, providing new insights into how the crystal structure is affected by the experimental parameters available for growth.

    关键词: Wurtzite,Zinc Blende,GaAs,Nanowire,Simulation

    更新于2025-09-23 15:23:52

  • High Breakdown Strength Schottky Diodes Made from Electrodeposited ZnO for Power Electronics Applications

    摘要: The synthesis of ZnO films by optimized electrodeposition led to the achievement of a critical electric field of 800 kV/cm. This value, which is 2 to 3 times higher than in monocrystalline silicon, was derived from a vertical Schottky diode application of columnar-structured ZnO films electrodeposited on platinum. The device exhibited a free carrier concentration of 2.5 × 10^15 cm^-3, a rectification ratio of 3 × 10^8 and an ideality factor of 1.10, a value uncommonly obtained in solution-processed ZnO. High breakdown strength and high thickness capability make this environment-friendly process a serious option for power electronics and energy-harvesting.

    关键词: breakdown voltage,electrodeposition,zinc oxide,critical electric field,solution-processed,Schottky diode,power diode,ideality factor

    更新于2025-09-23 15:23:52

  • Matrix Metalloproteinase-Deactivating Contact Lens for Corneal Melting

    摘要: Corneal melting is an uncontrolled, excessive degradation of cellular and extracellular components of the cornea. This potential cause of corneal blindness is caused by excessive expression of zinc-dependent matrix metalloproteinases (MMPs) and has no satisfying cure as of now. Herein, we introduce a novel therapeutic hydrogel which can be made into a contact lens to slow down the progression of corneal melting by deactivating MMPs. The hydrogel backbone is comprised of poly(2-hydroxyetyl methacrylate) (pHEMA), a main material for commercial contact lenses, and dipicolylamine (DPA) which has high affinity and selectivity towards zinc ion. Due to the high affinity towards zinc ions, the DPA-conjugated pHEMA (pDPA-HEMA) hydrogel selectively removes zinc ions from a physiological buffer and deactivates MMP-1, MMP-2 and MMP-9 within 2 hours. pDPA-HEMA hydrogel also effectively prevents degradation of porcine corneas by collagenase A, a zinc-dependent protease, whereas the corneas completely degrades within 15 hours when incubated with pHEMA hydrogel. The presence of pDPA-HEMA hydrogel does not affect the viability of keratocytes and corneal epithelial cells. Unlike the conventional MMP inhibitors (MMPi), the pDPA-HEMA hydrogel minimizes the risk of serious non-specific side effects, and provides a method to slow down the progression of corneal melting and other related ocular diseases.

    关键词: dipicolylamine,contact lens,corneal melting,hydrogel,zinc,matrix metalloproteinases

    更新于2025-09-23 15:23:52

  • Subchronic intravenous toxicity study of biofunctional ZnO and its application as a fluorescence probe for cell-specific targeting

    摘要: Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early cancer is a great challenge. Herein, we choose the visible‐light emitting zinc oxide non–core/shell type nanoparticle (NP) fluorophores (ZHIE) as prototypical materials. We have reported on these materials previously. The results showed that the ZHIE NPs exhibited good water solubility and good biocompatibility. This study was conducted to investigate the toxicity of ZHIE NPs when intravenously administered to mice repeatedly at the dose required for successful tumor imaging in vivo. Anti‐macrophage‐1 antigen (Mac1), a macrophage differentiation antigen, antibody‐conjugated ZHIE NPs successfully realized targeted imaging of murine macrophage cell line Raw264.7 cells. In conclusion, ZHIE NPs are not toxic in vivo and antibody‐conjugated ZHIE NPs have great potential in applications, such as single cell labeling.

    关键词: subchronic toxicity,zinc oxide (ZnO) nanoparticles,fluorescence probe

    更新于2025-09-23 15:23:52

  • Sol–Gel Spin-Coating Followed by Solvothermal Synthesis of Nanorods-Based ZnO Thin Films: Microstructural, Optical, and Gas Sensing Properties

    摘要: Zinc oxide thin films with nanorod morphology were investigated for microstructural and optical properties as well as their performance as a liquid petroleum gas sensing material. A two-step synthesis procedure consisting of sol–gel spin-coating and solvothermal methods was employed where several factors such as rational utilization of metal precursors, solvent, stabilizing, and structure directing agents, a repetitive drying-coating process, as well as post-thermal annealing were found influential to obtain qualified nanorods and a final homogeneous thin film. Compositional and optical investigations were pursued to characterize features, namely morphology, poly crystallinity, porous structure, nanocrystallite size, lattice oriented growth, textural atomic ratio, lattice purity and transparency, phonon and exciton transitions, as well as the formed structural defects via field-emission scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray, UV–Vis spectroscopy, Raman, and photoluminescence techniques. The as-prepared thin film was then used as an active LPG sensing material via a home-made gas sensor where the control sensing parameters were chamber testing temperature and gas concentration. Results showed a quantitative response of 92.7% as sensor sensitivity at an operation temperature of 250°C and a LPG concentration of 800 ppm in addition to fast response and recovery times of 44.1 s and 218.7 s, respectively.

    关键词: Zinc oxide nanorods,thin film,optical characteristics,gas sensing,microstructural properties,liquid petroleum gas

    更新于2025-09-23 15:23:52

  • Length-Dependent Electronic Transport Properties of the ZnO Nanorod

    摘要: The two-probe device of nanorod-coupled gold electrodes is constructed based on the triangular zinc oxide (ZnO) nanorod. The length-dependent electronic transport properties of the ZnO nanorod was studied by density functional theory (DFT) with the non-equilibrium Green’s function (NEGF). Our results show that the current of devices decreases with increasing length of the ZnO nanorod at the same bias voltage. Metal-like behavior for the short nanorod was observed under small bias voltage due to the interface state between gold and the ZnO nanorod. However, the influence of the interface on the device was negligible under the condition that the length of the ZnO nanorod increases. Moreover, the rectification behavior was observed for the longer ZnO nanorod, which was analyzed from the transmission spectra and molecular-projected self-consistent Hamiltonian (MPSH) states. Our results indicate that the ZnO nanorod would have potential applications in electronic-integrated devices.

    关键词: current–voltage (I–V) curves,molecular-projected self-consistent Hamiltonian (MPSH),transport properties,zinc oxide (ZnO) nanorod,transmission spectrum

    更新于2025-09-23 15:23:52

  • Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties

    摘要: In this paper, we present for the first time the obtaining and characterization of new antibacterial and biocompatible nano-ZnO–bacterial cellulose (BC) material with controlled interfaces for studying in vitro microorganisms (Escherichia Coli (ATCC 8737), B. subtilis Spizizenii Nakamura (ATCC 6633), Candida albicans (ATCC10231)) and mammalian cells (human dermal fibroblast cells) response. The use of BC based material with controlled characteristics in terms of quantity and distribution of ZnO onto BC membrane (with 2D and 3D fibers arrangement) is directly correlated with the surface chemical and topographical properties, the method of preparation, and also with the type of cells implied for the specific application within the bioengineering fields. In our study, the uniform distribution and the control on the quantity of ZnO nanoparticles onto 3D BC were obtained using matrix assisted pulsed laser evaporation (MAPLE) method. The influence on particle distribution onto 3D bio cellulose were investigated based on two types of solvents (water and chloroform) involved in target preparation within MAPLE deposition. The attachment of the nanoparticles to the bacterial cellulose surface and fibrils was demonstrated by SEM and FT-IR studies. The BC-ZnO showed both resistance to bacteria-sticking and non-cytotoxic effect on the human dermal fibroblasts cells at a mass distribution onto surface of 1.68 mg ZnO NPS/mm2. These results represent a good premise in terms of tailoring BC substrates with ZnO particles that could determine or enhance both the biocompatibility and antibacterial properties of BC-composite materials.

    关键词: Antibacterial effect,Zinc oxide nanoparticles,MAPLE deposition technique,Bacterial cellulose,Biocompatibility

    更新于2025-09-23 15:23:52

  • Two-step synthesis of reduced graphene oxide with columnar-shaped ZnO composites and their photocatalytic performance with natural dye

    摘要: Composites of ZnO with reduced graphene oxide were prepared in two-step synthesis process with constant temperature in variation with pH values. The synthesized composites were characterized and the results suggest that ZnO structure in the composites has a columnar morphology with an average diameter ranging 0.8–1.57 μm. The obtained properties of the composites with the present method confirmed that the material morphology influences the absorption and photocatalytic activity of natural dye under sunlight irradiation. The result shows that the maximum degradation efficiency is 64.40% achieved in 120 min.

    关键词: Zinc oxide,Columnar morphology,Photocatalytic activity,Reduced graphene oxide,Natural dye

    更新于2025-09-23 15:23:52

  • A novel non-enzymatic zinc oxide thin film based electrochemical recyclable strip with device interface for quantitative detection of catechol in water

    摘要: Catechol, one of the major effluents released by various chemical and metal processing industries, causes severe pollution of groundwater. Monitoring of catechol in water using cost-effective, handheld sensor is demanding for the safety of the environment. In this work, non-enzymatic zinc oxide thin film based electrochemical strip sensor is developed on conducting glass substrate for detection of catechol. The preparation of strip without employing standard Pt or Ag/AgCl electrodes and simply depositing ZnO through wet chemical process represents a cost-effective innovative technique. The ZnO thin film is characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and grazing incidence X-ray diffractrometer (GIXRD). Catechol is electrochemically detected by means of cyclic voltammetry and amperometry. A prominent redox peak of the developed strip attributed to the detection of catechol is observed at -0.26 V in cyclic voltammetry. The strip is integrated with readout meter and an algorithm is built based on the experimentally observed linear variation of amperometric current with catechol concentration. The quantitative detection performance is demonstrated by testing 0.1-12 ppm catechol solutions.

    关键词: Zinc oxide,Catechol,Electrochemical strip sensor,Amperometry,Cyclic voltammetry

    更新于2025-09-23 15:23:52