- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Antimicrobial photodynamic inactivation of fungal biofilm using amino functionalized mesoporus silica-rose bengal nanoconjugate against Candida albicans
摘要: Candida albicans is an opportunistic fungal pathogen that causes both superficial and systemic infection and an important candidate that contribute to high morbidity and mortality rates in immunocompromised patients. The ability of C. albicans to switch from yeast to filamentous form and thereby forming biofilms make them resistant to most of the antifungal drugs available today. Thus the development of more effective antifungal drugs are essential and crucial at this point of time. Antimicrobial photodynamic therapy is an alternative modality to treat such biofilm forming resistant strains. This study aims to investigate the enhanced efficiency of newly synthesized MSN-RB conjugate as an antimicrobial photosensitizer for antimicrobial photodynamic therapy against C. albicans. Functionalization of MSN with amino groups was performed to increase the dye loading capacity. Conjugation process of MSN-RB was confirmed using different techniques including UV–Vis spectroscopy, Fluorescent spectroscopy and FTIR analysis. A low power green laser 50 mW irradiation was applied (5 min) for activation of MSN-RB conjugate and RB against C. albicans biofilm and planktonic cell. The comparative study of MSN-RB conjugate and free RB on aPDT was evaluated using standard experimental procedures. Antibiofilm efficacy was determined using biofilm inhibition assay, cell viability, EPS quantification and CLSM studies. The results revealed that MSN-RB conjugate has a significant antimicrobial activity (88.62 ± 3.4%) and antibiofilm effect on C. albicans when compared to free dye after light irradiation. The MSN-RB conjugate based aPDT can be employed effectively in treatment of C. albicans infections.
关键词: Antimicrobial photodynamic therapy,Conjugation,Amino functionalization,Mesoporus silica nanoparticles,Lipid peroxidation,Anti-biofilm activity
更新于2025-09-23 15:23:52
-
Physico-mechanical and antimicrobial properties of an orthodontic adhesive containing cationic curcumin doped zinc oxide nanoparticles subjected to photodynamic therapy
摘要: Background: Potential complications on the crown level during fixed orthodontic procedures are white spot, enamel demineralization and the tooth decay. This study evaluated the antimicrobial properties of an orthodontic adhesive incorporating cationic curcumin doped zinc oxide nanoparticles (cCur/ZnONPs), which can have the highest concentration of cCur/ZnONPs and shear bond strength (SBS) value simultaneously, on the against cariogenic bacteria including Streptococcus mutans, Streptococcus sobrinus, and Lactobacillus acidophilus. Materials and methods: Following synthesis and confirmation of cCur/ZnONPs, SBS and adhesive remnant index (ARI) of the test adhesives containing cCur/ZnONPs (1.2, 2.5, 5, 7.5, and 10% wt.) were measured using universal testing machine and stereomicroscope, respectively. After continuously rinsed (up to 180 day), the residual antimicrobial ability of modified adhesives which can have the highest concentration of cCur/ZnONPs and SBS value simultaneously were determined by disc agar diffusion (DAD), biofilm formation inhibition, and metabolic activity assays following photo-activation using light-emitting diode (LED) for 5 min against multispecies cariogenic biofilm-producing bacteria. Results: Adhesive with 7.5% wt. cCur/ZnONPs showed the highest concentration of cCur/ZnONPs and SBS value (14.89 ± 3.26 MPa, P < 0.05) simultaneously. No significant differences in ARI scores were found between the modified adhesive and control (Transbond XT without the cCur/ZnONPs). 7.5% wt. cCur/ZnONPs following photo-activation was not colonized by the test microorganisms and suppressed 100% metabolic activity of the test microorganisms up to 90 day compared to the control group (cCur/ZnONPs free LED irradiation; P < 0.05). In DAD assay, the reduction of photodynamic disinfection of the 7.5% wt. cCur/ZnONPs against test bacteria was positively associated to the time, in such a way that it was decreased significantly after 60 day. From days 120 onwards, microbial biofilm formation and metabolic activity was progressively increased on 7.5% wt. cCur/ZnONPs adhesive discs compared to the control group (cCur/ZnONPs free LED irradiation). Conclusions: Our findings highlight the photo-activated 7.5% wt. cCur/ZnONPs can serve as an orthodontic adhesive additive for control the cariogenic multispecies biofilm, and also to reduce their metabolic activity.
关键词: Cariogenic bacteria,Orthodontic adhesive,Antimicrobial photodynamic therapy,Cationic curcumin,Zinc oxide nanoparticles
更新于2025-09-23 15:23:52
-
Antimicrobial photodynamic therapy with phenothiazinium photosensitizers in non-vertebrate model Galleria mellonella infected with Fusarium keratoplasticum and Fusarium moniliforme
摘要: Fusarium keratoplasticum and Fusarium moniliforme are filamentous fungi common in the environment and cause mycosis in both animals and plants. Human infections include mycetoma, keratitis and onychomycosis, while deeper mycosis occurs in immunocompromised patients. Most of the Fusarium spp. are frequently resistant to treatment with currently used antifungals. The frequent occurrence of antifungal resistance has motivated the study of antimicrobial photodynamic therapy as an alternative treatment for fungal infections. Many studies have investigated the in vitro use of antimicrobial photodynamic therapy to kill fungi, but rarely in animal models of infection. Thus, here we employed the invertebrate wax moth Galleria mellonella to study the in vivo effects of antimicrobial photodynamic therapy with three different phenothiazinium photosensitizers, methylene blue, new methylene blue N and the pentacyclic S137 against infection with microconidia of Fusarium keratoplasticum and Fusarium moniliforme. The effect of antimicrobial photodynamic therapy using these photosensitizers and light-emitting diodes with an emission peak at 635 nm and an integrated irradiance from 570 to 670 nm of 9.8 mW cm?2 was investigated regarding the toxicity, fungal burden, larval survival and cellular immune response. The results from this model indicate that antimicrobial photodynamic therapy with methylene blue, new methylene blue N and S137 is efficient for the treatment of infection with F. keratoplasticum and F. moniliforme. The efficiency can be attributed to the fungal cell damage caused by antimicrobial photodynamic therapy which facilitates the action of the host immune response.
关键词: Antimicrobial photodynamic therapy,Fusarium keratoplasticum,Galleria mellonella,Mycosis,Fusarium moniliforme
更新于2025-09-23 15:22:29
-
Monitoring of Virulence Factors and Metabolic Activity in Aggregatibacter Actinomycetemcomitans Cells Surviving Antimicrobial Photodynamic Therapy via Nano-Chitosan Encapsulated Indocyanine Green
摘要: Aggregatibacter actinomycetemcomitans is an etiological agent frequently found in both chronic and aggressive periodontitis as well as peri-implantitis. This study assessed the effect of antimicrobial photodynamic therapy (aPDT), as an alternative treatment modality, by nano-chitosan encapsulated indocyanine green (CNPs/ICG), as a photosensitizer, on the virulence features of cell-surviving aPDT against A. actinomycetemcomitans. The cell cytotoxicity effect of CNPs/ICG was evaluated on primary human gingival fibroblast cells. A. actinomycetemcomitans ATCC 33384 photosensitized with CNPs/ICG was irradiated with diode laser at a wavelength of 810 nm for 1 min (31.2 J/cm2), and then bacterial viability measurements were done. The biofilm formation ability, metabolic activity, and antimicrobial susceptibility profiles were assessed for cell-surviving aPDT. The effect of aPDT on the expression of the fieF virulent gene, encoding the ferrous-iron efflux pump, was evaluated by the quantitative real-time PCR. CNPs/ICG-aPDT resulted in a significant reduction of cell viability (91%), biofilm formation capacity (53%), and metabolic activity (48%) of A. actinomycetemcomitans when compared to the control group (P < 0.05). Moreover, fieF gene expression was downregulated by 14.8 folds after the strains were treated with aPDT. The virulence of A. actinomycetemcomitans strain reduced in cells surviving aPDT with CNPs/ICG, indicating the potential implications of aPDT for the treatment of A. actinomycetemcomitans infections in periodontitis and peri-implantitis in vivo.
关键词: peri-implantitis,nano-chitosan,Aggregatibacter actinomycetemcomitans,antimicrobial photodynamic therapy,indocyanine green,periodontitis
更新于2025-09-23 15:21:01
-
An Insight Into the Potentiation Effect of Potassium Iodide on aPDT Efficacy
摘要: Antimicrobial photodynamic therapy (aPDT) is gaining a special importance as an effective approach against multidrug-resistant strains responsible of fatal infections. The addition of potassium iodide (KI), a non-toxic salt, is recognized to increase the aPDT efficiency of some photosensitizers (PSs) on a broad-spectrum of microorganisms. As the reported cases only refer positive aPDT potentiation results, in this work we selected a broad range of porphyrinic and non-porphyrinic PSs in order to gain a more comprehensive knowledge about this aPDT potentiation by KI. For this evaluation were selected a series of meso-tetraarylporphyrins positively charged at meso positions or at β-pyrrolic positions and the non-porphyrinic dyes Methylene blue, Rose Bengal, Toluidine Blue O, Malachite Green and Crystal Violet; the assays were performed using a bioluminescent E. coli strain as a model. The results indicate that KI has also the ability to potentiate the aPDT process mediated by some of the cationic PSs [Tri-Py(+)-Me, Tetra-Py(+)-Me, Form, RB, MB, Mono-Py(+)-Me, β-ImiPhTPP, β-ImiPyTPP, and β-BrImiPyTPP] allowing a drastic reduction of the treatment time as well as of the PS concentration. However, the efficacy of some porphyrinic and non-porphyrinic PSs [Di-Py(+)-Me opp, Di-Py(+)-Me adj, Tetra-Py, TBO, CV, and MG] was not improved by the presence of the coadjuvant. For the PSs tested in this study, the ones capable to decompose the peroxyiodide into iodine (easily detectable by spectroscopy or by the visual appearance of a blue color in the presence of amylose) were the most promising ones to be used in combination with KI. Although these studies confirmed that the generation of 1O2 is an important fact in this process, the PS structure (charge number and charge position), aggregation behavior and affinity for the cell membrane are also important features to be taken in account.
关键词: cationic porphyrins,xanthenes,potassium iodide,phenothiazines,bioluminescent E. coli,antimicrobial photodynamic therapy
更新于2025-09-23 15:21:01
-
Photoexcitation triggering via semiconductor Graphene Quantum Dots by photochemical doping with Curcumin versus perio-pathogens mixed biofilms
摘要: Background: Recently, antimicrobial photodynamic therapy (aPDT) as an alternative treatment modality has been used adjunctively in the treatment of periodontitis and peri-implantitis. Photosensitizing agents in the form of nanoparticles have been designed for improving the e?ciency of aPTD. Graphene quantum dots are a special type of nanocrystals that can promote aPDT when coupled with curcumin (Cur). The main objective of the present study was to investigate the e?ects of photoexcited GQD-Cur on the metabolic activity of perio-pathogen mixed bio?lms. Materials and methods: GQD-Cur was synthesized and characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectrometry (UV–Vis), and X-ray di?raction (XRD). The cell cytotoxicity e?ect of GQD-Cur was evaluated on primary human gingival ?broblast (HuGu) cells. Perio-pathogen mixed bio?lms including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia photosensitized with GQD doped with Cur were irradiated with a blue LED at a wavelength of 435 ± 20 nm for 1 min, and then bacterial viability measurements were performed. The antimicrobial susceptibility pro?le, bio?lm formation ability, amount of reactive oxygen species (ROS) released, and variations of gene expressions involved in bio?lm formation were assessed. Results: The SEM, DLS, FTIR, UV–Vis spectrometry, and XRD pattern con?rmed that GQD-Cur was synthesized successfully. According to the results, GQD-Cur exhibited no cytotoxicity against HuGu cells. Photoexcited GQD-Cur resulted in a signi?cant reduction in cell viability (93%) and bio?lm formation capacity (76%) of peri-pathogens compared to the control group (P < 0.05). According to the results, a signi?cant concentration-dependent increase in the ROS generation was observed in perio-pathogens mixed cells treated with di?erent doses of GQD-Cur-aPDT. Moreover, rcpA, ?mA, and inpA gene expression pro?les were downregulated by 8.1-, 9.6-, and 11.8-folds, respectively. Conclusions: Based on the results, photoexcited GQD-Cur have a high potency of perio-pathogens suppression in planktonic and bio?lm forms and downregulation of the bio?lm genes expression pattern was exploited as a nanoscale-based platform for periodontitis.
关键词: Curcumin,Antimicrobial photodynamic therapy,Graphene Quantum Dot,Peri-implantitis,Periodontitis
更新于2025-09-19 17:13:59
-
Feasibility of transgingival laser irradiation for antimicrobial photodynamic therapy
摘要: Aim: Diode lasers are commonly used for antimicrobial photodynamic therapy (aPDT). This study aimed to assess the feasibility of transgingival laser irradiation during aPDT and evaluate whether the photosensitizer can be activated. Materials and Methods: Four diode laser settings were assessed for transgingival irradiation: 120 mW, 80 mW, 60 mW, and 40 mW. Fifteen soft-tissue pieces from a pig’s lower jaw were prepared. The specimens’ thickness was measured and transgingival laser irradiation was performed. A digital power meter measured laser power on the other side of the tissue. The power outcome after staining of the nonbuccal aspect of the tissue with photosensitizer dye was assessed similarly. Results: Transgingival laser irradiation (average soft-tissue thickness: 0.84 ± 0.06 mm) resulted in di?erent power transmission depending on the power settings and photosensitizer. The lowest values were observed with the 40 mW setting and photosensitizer (median 3.3 mW, max. 5.0 mW, min. 2.3 mW, interquartile range 1.2), and the highest at 120 mW without photosensitizer (median 41.3 mW, max. 42.7 mW, min. 38.0 mW; interquartile range 1.5). Conclusions: This study indicates that transgingival irradiation may be suitable for aPDT, since power transmission through the gingival tissue was observed in all specimens. However, the decrease in laser power caused by both the soft tissue and the photosensitizer has to be taken into account.
关键词: Transgingival irradiation,Low-level laser therapy,Periodontitis,Diode laser,Antimicrobial photodynamic therapy
更新于2025-09-11 14:15:04
-
Action of antimicrobial photodynamic therapy with red leds in microorganisms related to halitose
摘要: Introduction: Halitosis is the term used to describe any unpleasant odor relative to expired air regardless of its source. The prevalence of halitosis in the population is approximately 30%, of which 80 to 90% of the cases originate in the oral cavity resulting from proteolytic degradation by gram negative anaerobic bacteria. Antimicrobial photodynamic therapy (aPDT) has been widely used with very satisfactory results in the health sciences. It involves the use of a non-toxic dye, called photosensitizer (FS), and a light source of a speci?c wavelength in the presence of the environmental oxygen. This interaction is capable of creating toxic species that generate cell death. The objective of this controlled clinical study is to verify the effect of aPDT in the treatment of halitosis by evaluating the formation of volatile sulphur compounds with gas chromatography and microbiological analysis before and after treatment. Materials and Methods: Young adults in the age group between 18 and 25 years with diagnosis of halitosis will be included in this research. The selected subjects will be divided into 3 groups: G1: aPDT; G2: scraper, and G3: aPDT and scraper. All subjects will be submitted to microbiological analysis and evaluation with Oral ChromaTM before, immediately after treatment, 7, 14, and 30 days after treatment. For the evaluation of the association of the categorical variables the Chi-square test and Fisher’s Exact Test will be used. To compare the means the student t test and analysis of variance (ANOVA) will be used and to analyse the correlation between the continuous variables the correlation test by Pearson will be applied. In the analyses of the experimental differences in each group the Wilcoxon test will be used. For all analyses a level of signi?cance of 95% (P < .05) will be considered. Discussion: Halitosis treatment is a topic that still needs attention. The results of this trial could support decision-making by clinicians regarding aPDT using aPDT for treating halitosis.
关键词: qPCR,halitosis,antimicrobial photodynamic therapy
更新于2025-09-11 14:15:04
-
Antimicrobial Biophotonic Treatment of Ampicillin-Resistant Pseudomonas aeruginosa with Hypericin and Ampicillin Cotreatment Followed by Orange Light
摘要: Bacterial antibiotic resistance is an alarming global issue that requires alternative antimicrobial methods to which there is no resistance. Antimicrobial photodynamic therapy (APDT) is a well-known method to combat this problem for many pathogens, especially Gram-positive bacteria and fungi. Hypericin and orange light APDT efficiently kill Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and the yeast Candida albicans. Although Gram-positive bacteria and many fungi are readily killed with APDT, Gram-negative bacteria are difficult to kill due to their different cell wall structures. Pseudomonas aeruginosa is one of the most important opportunistic, life-threatening Gram-negative pathogens. However, it cannot be killed successfully by hypericin and orange light APDT. P. aeruginosa is ampicillin resistant, but we hypothesized that ampicillin could still damage the cell wall, which can promote photosensitizer uptake into Gram-negative cells. Using hypericin and ampicillin cotreatment followed by orange light, a significant reduction (3.4 log) in P. aeruginosa PAO1 was achieved. P. aeruginosa PAO1 inactivation and gut permeability improvement by APDT were successfully shown in a Caenorhabditis elegans model.
关键词: hypericin,antimicrobial photodynamic therapy (APDT),Pseudomonas aeruginosa,ampicillin,Caenorhabditis elegans,orange light
更新于2025-09-11 14:15:04
-
Photomedicine - Advances in Clinical Practice || Can Nanotechnology Shine a New Light on Antimicrobial Photodynamic Therapies?
摘要: Recent developments in light‐controlled therapies (e.g., photodynamic and photothermal therapies) provide promising strategies to prevent and suppress bacterial infections, which are a leading cause of morbidity and mortality. Antibacterial photodynamic therapy (aPDT) has drawn increasing attention from the scientific society for its potential to kill multidrug‐resistant pathogenic bacteria and for its low tendency to induce drug resistance. In this chapter, we summarize the mechanism of action of aPDT, the photosensitizers, as well the current developments in terms of treating Gram‐positive and Gram‐negative bacteria. The chapter also describes the recent progress relating to photomedicine for preventing bacterial infections and biofilm formation. We focus on the laser device used in aPDT and on the light‐treatment parameters that may have a strong impact on the results of aPDT experiments. In the last part of this chapter, we survey on the various nanoparticles delivering photoactive molecules, and photoactive‐nanoparticles that can potentially enhance the antimicrobial action of aPDT.
关键词: antimicrobial photodynamic therapy,laser,nanotechnology,bacterial infections,biofilm
更新于2025-09-09 09:28:46