- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Frequency Extension of Atomic Measurement of Microwave Strength Using Zeeman Effect
摘要: Measuring the field strength of an electromagnetic wave based on atomic quantum mechanics is expected to be an innovative method to realize stable and reliable measurements. However, the major issue of atomic measurements is that the measurable frequency is limited to the resonant frequency of atoms. Therefore, in this paper, we demonstrate the measurement at arbitrary frequencies using the Zeeman effect in a static magnetic field. A cesium vapor cell is placed in a static magnetic field of approximately 40 mT, which causes the resonant frequency of the cesium atom to shift from 9.2 to 8.2 GHz. In addition, the Rabi frequency due to the interaction between cesium atoms and microwaves is measured at the frequency of 8.2 GHz in this experiment.
关键词: frequency measurement,microwave measurements,metrology,microwave spectroscopy,electromagnetic measurements,Atom optics,atomic measurements,measurement standards
更新于2025-09-23 15:22:29
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Multistage Interband Cascade Thermophotovoltaic Devices with ~0.2 eV Bandgap
摘要: Detection of defects in induction machine rotor bars for disassembled motors are required to evaluate machines considered for repair as well as fulfilling incremental quality assurance checks in the manufacture of new machines. Detection of rotor bar defects prior to motor assembly are critical in increasing repair efficiency and assuring the quality of newly manufactured machines. Many methods of detecting rotor bar defects in unassembled motors lack the sensitivity to find both major and minor defects in both cast and fabricated rotors along with additional deficiencies in quantifiable test results and arc-flash safety hazards. A process of direct magnetic field analysis can examine measurements from induced currents in a rotor separated from its stator yielding a high-resolution fingerprint of a rotor’s magnetic field. This process identifies both major and minor rotor bar defects in a repeatable and quantifiable manner appropriate for numerical evaluation without arc-flash safety hazards.
关键词: magnetic flux,ac motors,electromagnetic measurements,induction motors,rotors,AC machines
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) - Portland, OR, USA (2019.10.14-2019.10.16)] 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) - High Power Indium Phosphide Photonic Integrated Circuit for Pulse Position Modulation Free Space Optical Communications
摘要: Detection of defects in induction machine rotor bars for disassembled motors are required to evaluate machines considered for repair as well as fulfilling incremental quality assurance checks in the manufacture of new machines. Detection of rotor bar defects prior to motor assembly are critical in increasing repair efficiency and assuring the quality of newly manufactured machines. Many methods of detecting rotor bar defects in unassembled motors lack the sensitivity to find both major and minor defects in both cast and fabricated rotors along with additional deficiencies in quantifiable test results and arc-flash safety hazards. A process of direct magnetic field analysis can examine measurements from induced currents in a rotor separated from its stator yielding a high-resolution fingerprint of a rotor’s magnetic field. This process identifies both major and minor rotor bar defects in a repeatable and quantifiable manner appropriate for numerical evaluation without arc-flash safety hazards.
关键词: magnetic flux,ac motors,electromagnetic measurements,induction motors,rotors,AC machines
更新于2025-09-19 17:13:59
-
Low-Light Image Enhancement with Semi-Decoupled Decomposition
摘要: Detection of defects in induction machine rotor bars for disassembled motors are required to evaluate machines considered for repair as well as fulfilling incremental quality assurance checks in the manufacture of new machines. Detection of rotor bar defects prior to motor assembly are critical in increasing repair efficiency and assuring the quality of newly manufactured machines. Many methods of detecting rotor bar defects in unassembled motors lack the sensitivity to find both major and minor defects in both cast and fabricated rotors along with additional deficiencies in quantifiable test results and arc-flash safety hazards. A process of direct magnetic field analysis can examine measurements from induced currents in a rotor separated from its stator yielding a high-resolution fingerprint of a rotor’s magnetic field. This process identifies both major and minor rotor bar defects in a repeatable and quantifiable manner appropriate for numerical evaluation without arc-flash safety hazards.
关键词: induction motors,ac motors,electromagnetic measurements,magnetic flux,AC machines,rotors
更新于2025-09-16 10:30:52