修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-photothermal Combination Therapy Towards Breast Cancer

    摘要: Gold nanorods (GNRs) and doxorubicin (DOX) were loaded into the lumen of halloysite nanotubes (HNTs) via a rapid synthesis process (2 min) and physical adsorption. The targeting molecules of folic acid (FA) are then conjugated to HNTs via reactions with bovine serum albumin (BSA). The formation of GNRs in HNTs was verified by different techniques. The Au-HNTs-DOX@BSA-FA shows maximum of 26.8 oC temperature rising after 8 min 808-nm laser irradiation under 0.8 W cm-2. The functionalized HNTs exhibited stronger chemotherapeutic effect under laser irradiation, since the laser could promote the release of DOX and temperature rising. Au-HNTs-DOX@BSA-FA treated MCF-7 cells exhibited survival rate of 7.4% after laser irradiation. Au-HNTs-DOX@BSA-FA treatment do not induce an obvious toxicity in blood biochemistry, liver and kidney function in normal mice. In vivo chemo-photothermal treatment towards 4T1-bearing mice suggested Au-HNTs-DOX@BSA-FA exhibited remarkable tumor-targeted efficiency and good controlled-release effect for DOX. Also, the nanoparticles exhibited a rapid photothermal performance and inhibiting ability of the growth of tumor. Due to the synergistic effect of chemical-photothermal therapy, the toxicity of DOX to normal tissues was reduced on the premise of ensuring the same curative effect with a low dosage of 0.32 mg kg-1. This novel chemo-photothermal therapy nanoplatform provided a safe, rapid, effective, and cheap choice for treatment of breast tumor both in vitro and in vivo.

    关键词: doxorubicin,photothermal therapy,halloysite nanotubes,chemo-photothermal therapy,gold nanorods

    更新于2025-09-23 15:23:52

  • Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging

    摘要: Halloysite nanotubes (HNTs) are a kind of aluminosilicate clay with a unique hollow tubular structure that has been intensively explored for various applications especially in biomedical fields owing to their excellent biocompatibility, biodegrading potential and low cost. Surface modification of HNTs with functional polymers will greatly improve their properties and endow new functions for biomedical applications. In this work, a light-induced reversible addition-fragmentation chain transfer (RAFT) polymerization was introduced to successfully prepare HNTs based fluorescent HNTs/poly(PEGMA-Fl) composites in the presence of oxygen using diacrylate-fluorescein and poly (ethylene glycol) methyl ether methacrylate (PEGMA) as the monomers. Without other catalysts, heating, and deoxygenation procedure, the polymerization process can take place under mild conditions. Besides, owing to the introduction of fluorescein and PEGMA on the surface of HNTs, the resultant HNTs/poly(PEGMA-Fl) composites display high water dispersibility and stable fluorescence. The results from cell viability examination and confocal laser scanning microscopy also demonstrated that HNTs/poly(PEGMA-Fl) composites could be internalized by L929 cells with bright fluorescence and low cytotoxicity. Taken together, we developed a novel photo-initiated RAFT polymerization method for the fabrication of HNTs based fluorescent polymeric composites with great potential for biomedical applications. More importantly, many other multifunctional HNTs based polymer composites could also be fabricated through a similar strategy owing to good designability of RAFT polymerization.

    关键词: fluorescent composites,biomedical applications,Halloysite nanotubes,light-induced polymerization,surface-initiated RAFT polymerization

    更新于2025-09-19 17:13:59

  • Screen-printed PEDOT:PSS/halloysite counter electrodes for dye-sensitized solar cells

    摘要: In this work, water-based and viscous screen-printing inks composed of conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and insulating halloysite nanotubes as a filler (HNTs) with different organic additives were prepared by simply homogenization process. PEDOT:PSS/HNTs inks were screen-printed onto FTO substrates and were used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Incorporation of HNTs leads to a significant increase in ink thermal stability evaluated by TGA. XPS results indicate that simple homogenization process of PEDOT:PSS and HNTs led to the formation of compact PEDOT:PSS/HNTs nanocomposite structure where components are linked by physical interactions. Screen-printed PEDOT:PSS/HNTs CEs with 1 wt% of HNTs reached the highest conductivity (381 S/cm). Moreover, the positive effect of HNTs filler in CEs was confirmed by electrochemical measurements (CV and EIS). DSSCs with screen-printed PEDOT:PSS/HNTs CEs have overall better photovoltaic properties with ≈15% increase in the conversion efficiency (η = 4.5%) compared to PEDOT:PSS CEs.

    关键词: Screen-printing,Printed electronics,Counter electrode,Halloysite nanotubes,PEDOT:PSS,Dye-sensitized solar cells

    更新于2025-09-12 10:27:22