修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
研究主题
  • Heat Trap
  • outgassing
  • lifetime
  • Carbon nanotubes
  • current stability
  • cathode
  • thermionic emission
  • photovoltaic
  • monocrystalline
  • Heat mapping
应用领域
  • Nanomaterials and Technology
  • Electrical Engineering and Automation
机构单位
  • University of British Columbia
  • Univesitas Budi Luhur
  • Institut Teknologi Sepuluh Nopember
386 条数据
?? 中文(中国)
  • Fabrication and up-conversion fluorescence property of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped Ca-Si-Ti biomaterials

    摘要: This work demonstrates bulk-type up-conversion biomaterials which could be used as a bone repair material with the ability to monitor bone mineralization. Er3+/Yb3+ co-doped Ca-Si-Ti (CST3: TiO2 content is 30 mol%) bulk biomaterials were prepared via containerless processing technique in an aerodynamic levitation furnace and with subsequently heat treatment. The up-conversion fluorescence property was influenced by Yb3+ doping concentration, heat-treatment and mineralization in simulated body fluid (SBF). Optimum emission intensities were obtained for the sample with 20 mol% of Yb3+ doping concentration and heat treatment at 937 °C for 2 h. Hydroxyapatite (HAP) deposition was observed on the surface of the samples after soaking in SBF for 14 days, and the up-conversion fluorescence intensity of the samples decreased with the increase of soaking time. This indicates that Er3+/Yb3+ co-doped CST3 materials are bioactive, in which the HAP mineralization in bone repair could be monitored by measuring the intensity change of up-conversion fluorescence.

    关键词: Heat treatment,Up-conversion fluorescence,Containerless processing,Mineralization,Er3+/Yb3+ co-doped Ca-Si-Ti biomaterial

    更新于2025-09-23 15:23:52

  • 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy

    摘要: Photothermal therapy (PTT) has shown significant potential for anti-cancer modality. In this report, according to our best knowledge, we explore for the first time Ti2C-based MXene as a novel, highly efficient and selective agent for photothermal therapy (PTT). Ti2C superficially modified with PEG was obtained from the layered, commercially available Ti2AlC MAX phase in the process of etching aluminum layers using concentrated HF, and characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HREM) as well as X-Ray photoelectron spectroscopy for chemical analysis (ESCA-XPS). The PEG-coated Ti2C flakes showed a satisfactory photothermal conversion efficacy (PTCE) and good biocompatibility in wide range of the tested concentrations. Through in vitro studies, the PEG-modified Ti2C demonstrated notable NIR-induced ability to cancerous cells’ ablation with minimal impact on non-malignant cells up to the concentration of 37.5 μg ml-1. The applied doses of Ti2C_PEG in our work were even 24 times lower comparing other MXene-based photothermal agents. This work is expected to expand the utility of 2D MXenes to biomedical applications through the development of an entirely novel agents for photothermal therapy.

    关键词: photothermal therapy,biological activity,light-to-heat conversion,2D Ti2C MXenes,anticancer therapy

    更新于2025-09-23 15:23:52

  • Bumpy Hollow Gold Nanospheres for Theranostic Application: Effect of Surface Morphology on Photothermal Conversion Efficiency

    摘要: The combination of hollow core and rugose surface morphology is highly attractive for photoactive near-infrared (NIR) nanomaterials. Here, we present a facile pH modification to hollow gold nanosphere (HGN) synthesis to enable controlled tuning of the surface morphology from smooth to very bumpy. Unlike other methods, the synthetic protocol does not require harsh surfactants, secondary reducing agents, or organic solvents. The resultant bumpy HGNs (bHGNs) are highly monodisperse with little variation in protrusion length from particle to particle. Mechanistic studies suggest that surface rugosity is mainly controlled by the presence of free OH- ions in solution. We also present the first systematic investigation into the effect of surface morphology on the photothermal conversion efficiency (PCE) of bumpy as well as smooth HGNs, with a maximum PCE reaching 99%. Although expected to have a higher scattering component, the bHGNs retain the excellent PCE of their smooth counterparts, which may be due to efficient reabsorption of scattered light.

    关键词: surface plasmon resonance,photothermal conversion efficiency,heat generation,surface morphology,hollow gold nanospheres

    更新于2025-09-23 15:23:52

  • Simultaneous mapping of single bubble dynamics and heat transfer rates for SiO <sub/>2</sub> /water nanofluids under nucleate pool boiling regime

    摘要: Dependence of single vapor bubble dynamics and heat transfer rates on varying concentration of SiO2 nanoparticles for a range of subcooled conditions (0–9 ?C) has been experimentally studied under nucleate pool boiling configuration. Non-invasive measurements have been carried out using rainbow schlieren deflectometry. Results on bubble dynamics showed that the bubble diameter and aspect ratio decrease with increasing subcooling levels as well as concentration of nanofluids. The frequency of bubble oscillations was found to increase first and then decrease with increasing subcooling levels while it decreases monotonically with increasing nanofluid concentration. Bubble departure frequency increased significantly for nanofluids, while it decreased with increasing subcooling levels. Condensation effects at the bubble interface were reflected in the form of redistribution of colors around it. Schlieren images clearly revealed a spread in the spatial extent of the thermal boundary layer region caused by the suspended nanoparticles around the vapor bubble as well as near the heated substrate. This phenomenon has been considered as one of the factors that tends to alter the condensation effects and, in turn, affects the bubble dynamics. Quantitative analysis of schlieren images revealed that the natural convective heat flux increases with increasing subcooling levels, while it decreases with increasing nanoparticle concentration. Deterioration in the natural convection phenomenon in the presence of suspended nanoparticles has been attributed to the reduced strength of thermal gradients adjacent to the heater substrate. On the other hand, evaporative heat flux was observed to decrease with increasing subcooling levels and increase with increasing concentration of nanofluids.

    关键词: nucleate pool boiling,bubble dynamics,schlieren deflectometry,subcooling,heat transfer,nanofluids

    更新于2025-09-23 15:23:52

  • Fabrication and characterisation of viscose fibre with photoinduced heat-generating properties

    摘要: In the field of functional textile research, heat-generating fibres to maintain body temperature without unsustainable energy input are of interest. Here, we propose a photoinduced heat-generating viscose fibre fabricated by adding zirconium carbide (ZrC) to the viscose solution. Viscose nonwoven fabrics comprising ZrC-doped viscose fibres were irradiated by infrared (IR) light to measure their surface temperatures, thereby determining their light-to-heat conversion effects. The results show that the surface temperature of the viscose fabric doped with 4% ZrC was increased by almost 40 °C, as verified by ultraviolet–visible–near-IR (NIR) spectroscopy, indicating that the ZrC-doped viscose fibre was significantly increased in photon absorption in the visible-light and NIR regions. The cross-sectional morphology of the viscose fibre was observed using a scanning electron microscope. In addition, thermogravimetric analysis was used to determine the thermal decomposition behaviour of the doped viscose fibres. Moreover, it is noticed that the ZrC-doped viscose fibre has lower moisture regain, potentially increasing the wet strength of the viscose fibre.

    关键词: Zirconium carbide,Photoinduced heat-generation,Viscose fibre,Light absorption

    更新于2025-09-23 15:23:52

  • In-situ synthesis of mullite-SiCw composite ceramics in Li2O-Al2O3-SiO2 ternary system for solar heat transmission pipeline

    摘要: Nano-SiC whiskers (nano-SiCw) were in-situ synthesized in Li2O-Al2O3-SiO2 ternary system for preparing highly densified mullite-SiCw composite ceramics used for solar heat transmission pipeline. Mechanisms on the in-situ synthesis of nano-SiCw in the ternary system were investigated and the impact of nano-SiCw on the performances of the composites had been studied. Results showed that the growth processes of nano-SiC whiskers in Li2O-Al2O3-SiO2 ternary system were dominated by liquid-solid (LS) mechanism and the Li2CO3 additive could improve the SiCw yield through increasing the content of liquid phase and lowering the liquid viscosity. Sample BS3 (with 2.22 wt% Li2CO3 additive) sintered at 1440 °C obtained the highest SiC content of 47.9%. Nano-SiC whiskers with a diameter of 20e30 nm were interlocking with rod-like mullite crystals to improve the mechanical properties of the composites, and sample BS1 sintered at 1420 °C showed the highest bending strength of 115.4 MPa. The in-situ synthesized SiCw also shew significant effects on improving the thermophysical properties of the composites and sample BS1 exhibited a 3.6 times higher thermal conductivity than that of blank sample B1 without the introduction of nano-SiCw.

    关键词: Li2O-Al2O3-SiO2 ternary system,Thermal conductivity,Mullite-SiCw composite ceramics,Solar heat transmission pipeline,SiC whiskers

    更新于2025-09-23 15:23:52

  • [IEEE 2018 19th International Conference on Electronic Packaging Technology (ICEPT) - Shanghai (2018.8.8-2018.8.11)] 2018 19th International Conference on Electronic Packaging Technology (ICEPT) - A novel organic coating assisted laser drilling method for TSV fabrication

    摘要: Through-silicon vias (TSVs) is a promising three-dimensional packaging solution in post-Moore's law era in the semiconductor industry. The fabrication of through silicon via plays an important role in three-dimensional packaging. Laser drilling is widely used in TSVs fabrication. However, the geometry quality of laser drilling is unsatisfied and heat affected zone (HAZ) is intrinsic. In this work, a novel organic coating assisted picosecond UV laser drilling method is proposed to obtain high-quality TSVs, the HAZ was noticeably eliminated and the TSVs quality was significantly improved. The effects of the organic thickness and laser power on the TSVs' quality were also studied in detail. It is found that the diameter of vias decreases with the increase of the organic thickness and decrease of the laser power. The minimum diameter of TSV obtained by this method is about 15 μm while the aspect ratio is beyond 30. Most importantly, by coating with the organic layer, the minimized via diameter can be decreased to about only 70% of the laser spot size which breaks the limit that the minimized via should be larger than or at least equal to the laser spot size. These findings will be helpful for TSV technology development in modern three-dimensional packaging.

    关键词: ultraviolet picosecond laser drilling,through silicon via,heat affected zone elimination,organics coating method

    更新于2025-09-23 15:22:29

  • Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization

    摘要: High-efficiency solar steam generation through interfacial solar heating of the membrane is a promising approach to alleviate the shortage of freshwater resources. In this work, we developed a membrane distillation device (MDD), consisting of a carbon nanotube (CNT) membrane as solar absorption layer, a qualitative filter paper as water transmission pipeline and an aerogel blanket as thermal insulator to achieve efficient solar harvesting and heat localization for enhancing water evaporation. The results illustrated that the MDD achieved a thermal conversion efficiency of up to 84.6% at a light intensity of 1 kW m?2 and showed superior cyclic stability for 10 cycles test. As a consequence, the self-assembled and reusable MDD was suitable as a promising candidate for seawater desalination.

    关键词: Heat localization,Solar steam generation,Solar harvesting,Carbon nanotube

    更新于2025-09-23 15:22:29

  • Sizing and improved grid integration of residential PV systems with heat pumps and battery storage systems

    摘要: In the future, the remuneration of photovoltaic (PV) grid feed-in might significantly drop in Germany and questions arise if small-scale PV systems remain economically attractive. However, battery storage systems (BSSs) and sector coupling with heat pumps (HPs) provide promising opportunities to increase PV self-consumption and the value of local energy generation, but change the dynamics of PV grid integration. Thus, an optimization model is proposed to enable all involved stakeholders to analyze interdependencies between different flexibility options for PV systems, incentive and grid integration. A case study-based approach allows an efficient evaluation of future PV systems with BSSs and HPs, the impact of such decentralized power-heat-storage systems on grid integration as well as proper incentive setting for sector coupling. The analysis shows that such shifting technologies are required to avoid undersizing of PV systems. BSSs only provide a benefit for the adoption of inflexible HPs, which is not preferable from a grid integration point of view. Operational incentives, such as peak charges and PV feed-in limits, offer a chance to foster PV grid integration and use new flexibilities in a grid-supporting way. The adoption of market-oriented operation leads to small benefit for such systems, which heavily rely on PV self-consumption.

    关键词: Power system planning,Heat pumps,Battery storage systems,Photovoltaic systems,Grid integration

    更新于2025-09-23 15:22:29

  • Temperature Measurement of Electromagnetic Launcher Rails Based on FBG

    摘要: Rails worked under a harsh environment in the electromagnetic launching. Measurement of temperature at or close to the rail-and-armature interface of an electromagnetic launch (EML) is capability that would provide a significant insight into the EML performance. This interface is difficult to access and requires any sensor to tolerate sliding contacts, high electrical currents, and extreme temperatures. As a result, the existing temperature sensor technology has not been successful in providing data at that location. The development of the fiber Bragg grating (FBG) may provide a potential solution for this requirement. By designing and building a temperature measurement system based on FBG, we can collect dynamic temperature data of the rail during the launch. This paper establishes a model of transient thermal field of EML, calculates the variation of rail temperature under the effect of the Joule heat, and compares with the measurement result. After adding the model in the case of the protection package of FBG temperature sensor, the simulation data agrees well with the test data, and the sensors do not been destroyed even disturbed. All of the above prove that this method is feasible, and the sensors can be used in the following tests.

    关键词: fiber Bragg grating (FBG),thermal field,Joule heat,temperature measurement,Electromagnetic launch (EML),rails

    更新于2025-09-23 15:22:29