修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

80 条数据
?? 中文(中国)
  • Constructing CH <sub/>3</sub> NH <sub/>3</sub> PbI <sub/>3</sub> and CH <sub/>3</sub> NH <sub/>3</sub> PbBr <sub/>3</sub> Perovskite Thin Film Electronic Structure from Single Crystal Band Structure Measurements

    摘要: Photovoltaic cells based on halide perovskites and possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential, but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single crystal band structure data from angle-resolved photoemission measurements. For two prototypical perovskites (CH3NH3PbBr3 and CH3NH3PbI3) we reveal the band dispersion in two high symmetry directions, and identify the global valence band maxima. With these benchmark data, we construct 'standard' photoemission spectra from polycrystalline thin film samples and resolve challenges discussed in the literature of determining the valence band onset with high reliability. Within the framework laid out here, the consistency of relating the energy level alignment in perovskite-based photovoltaic and optoelectronic devices with their functional parameters is substantially enhanced.

    关键词: single crystal and thin film perovskites,angle-resolved photoemission,low-energy electron diffraction and density functional theory

    更新于2025-09-23 15:22:29

  • Wavelength and shape dependent strong-field photoemission from silver nanotips

    摘要: We study optical field emission from silver nanotips, showing the combined influence of the illumination wavelength and the exact shape of the nanotip on the strong-field response. This is particularly relevant in the case of FIB milled nano tips, where the nanotip fabrication capabilities could become a new ingredient for the study of strong-field physics. The influence of the thermal load on the nanotip and its effect on the emission is studied as well by switching the repetition rate of the laser source from 1 kHz to 62 MHz, showing a clear transition towards the quenching of the strong-field emission.

    关键词: photoemission,nanotip,plasmon,strong-field

    更新于2025-09-23 15:22:29

  • Band bending analysis of charge characteristics at GeO <sub/>2</sub> /Ge interface by x-ray photoemission spectroscopy

    摘要: Ge complementary metal oxide semiconductor (CMOS) is promising for scaling beyond the Si CMOS due to its higher carrier mobility than Si. Analogue to classical SiO2/Si system in the Si CMOS technology, various interface/bulk charges including interface traps (Qit), fixed surface state charges (Qf), trapped positive charges (Qpt) and negative charges ((Qnt) in GeO2/Ge system are also crucial both for the device performance and reliability. Because small amounts of charges would cause photoemission peak shift characterized by x-ray photoemission spectroscopy (XPS), it offers a feasible way to evaluate various charge densities by measuring the band bending in Ge substrate from Ge 3d core-level energy shift at GeO2/Ge interface. Moreover, photoemission peak shifts as a function of x-ray irradiation time have been widely accepted for characterization of charge trapping phenomena. Here, we report a band bending analysis at GeO2/Ge interface of featuring vital charge characteristics for diverse device applications by XPS. HF-last cleaned Ge surface was verified to tend to be p-type, irrespective of the bulk conductivity. The n-Ge/GeO2 interfaces exhibit a reduction of upward band bending evolution of Ge substrate, while p-type-Ge/GeO2 interfaces indicate a reduction of downward band bending evolution when comparing the different quality GeO2/Ge interfaces. Based on the requirement of surface charge neutrality, such observation has been attributed to a dominated passivation effect to negatively charged interface traps and the positive fixed surface state charges, respectively. Moreover, a time evolution of Ge 3d and O 1s signals reveals a progressive band bending modification at GeO2/Ge interface, clarifying the thermally-grown GeO2 also contains electron traps (Qnt). Ultimately, the four types of charges relying on the GeO2/Ge quality were modeled to correlate with the observed Ge band bending evolution, which would impact both the device operation and reliability.

    关键词: band bending,x-ray photoemission spectroscopy,Ge-based electronics,charge characteristics

    更新于2025-09-23 15:22:29

  • [IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Suppression of electron emission from cathode in photoemission-assisted Ar plasma

    摘要: In order to improve the efficiency of the surface flattening process using photoemission-assisted plasma ion source, current-bias voltage characteristic and Ar+ ions/Ar atoms ratio in the plasma was investigated. The glow discharge starting voltage decreases by UV irradiation and a great number of Ar+ ions were irradiated to the substrate. On the other hand in PA Townsend discharge, the number of Ar+ ions reached at the substrate is smaller than that in glow discharge due to space charges near the cathode substrate.

    关键词: space charge effect,Langmuir probe,photoemission-assisted plasma

    更新于2025-09-23 15:21:21

  • [IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Field emission behavior of single n- and p-type black Si pillar structures

    摘要: We have investigated the properties of single n- and p-type black silicon (b-Si) pillars with a height of 20 μm under strong electric field and halogen lamp or laser illumination. For both type of b-Si pillar structures, I-V measurements revealed strong activation effects, which consisted in sudden current increases during the first up/down voltage sweeps. The maximum reproducible emission current from a single n-type b-Si pillar structure was about 15 μA. A pronounced saturation region at 240 nA was observed for a single p-type b-Si pillar. The current fluctuation over time showed a standard deviation of 28 % and 2.5 % for n- and p-type single b-Si pillar structures, respectively. Optical switching under halogen lamp illumination resulted in at least 3 times higher saturation currents and showed a linear dependence of the FE current on the laser power.

    关键词: black silicon,photoemission,field emission

    更新于2025-09-23 15:21:21

  • Formation of Occupied and Unoccupied Hybrid Bands at Interfaces between Metals and Organic Donors/Acceptors

    摘要: Efficient charge transport in organic semiconductors and at their interfaces with electrodes is crucial for the performance of organic molecule-based electronic devices. Band formation fosters effective transport properties and can be found in organic single crystals of large π-stacking aromatic molecules. However, at molecule/metal interfaces hybrid band formation and band dispersion is a rarely observed phenomenon. Using angle-resolved two-photon photoemission supported by density functional theory calculations we demonstrate such band formation for two different molecule/metal systems, namely tetrathiafulvalene (TTF)/Au(111) and tetrafluoro-tetracyanoquinodimethane (F4TCNQ)/Au(111), in the energy region of occupied as well as unoccupied electronic states. In both cases strong adsorbate/substrate interactions result in formation of interface states due to hybridization between localized molecular states and delocalized metal bands. These interface states exhibit significant dispersions. Our study reveals that hybridization in combination with an extended well-ordered adsorption structure of the π-conjugated organic molecules is a striking concept to receive and experimentally observe band formation at molecule/metal interfaces.

    关键词: band formation,organic semiconductors,molecule/metal interfaces,hybridization,charge transport,density functional theory,angle-resolved two-photon photoemission

    更新于2025-09-23 15:21:21

  • revealed by angle-resolved photoemission spectroscopy

    摘要: We revisit charge density wave (CDW) behavior in the archetypal quasi-one-dimensional (quasi-1D) material NbSe3 by high-resolution angle-resolved photoemission spectroscopy measurements utilizing a microfocused laser with a photon energy of 6.3 eV. We present a detailed view of the electronic structure of this complex multiband system and unambiguously resolve CDW gaps at the Fermi level (EF). By employing a tight-binding model, we argue that these gaps are the result of interband coupling between electronic states that reside predominantly on distinct 1D chains within the material. Two such localized states are found to couple to an electronic state that extends across multiple 1D chains, highlighting the importance of a higher-dimensional interaction in stabilizing the CDW ordering in this material. In addition, the temperature evolution of intrachain gaps caused by the CDW periodicities far below EF deviate from the behavior expected for a Peierls-type mechanism driven by nesting; the upper and lower bands of the renormalized CDW dispersions maintain a fixed peak-to-peak distance while the gaps are gradually removed at higher temperatures. This points toward a gradual loss of long-range phase coherence as the dominant effect in reducing the CDW order parameter, which may correspond to the loss of coherence between the coupled chains. Furthermore, one of the gaps is observed above the bulk and surface CDW transition temperatures, implying the persistence of short-range incoherent CDW order. The influence of such higher-dimensional interactions likely plays an important role in a range of low-dimensional systems.

    关键词: angle-resolved photoemission spectroscopy,tight-binding model,charge density wave,phase coherence,interband coupling,quasi-one-dimensional,NbSe3

    更新于2025-09-23 15:21:01

  • Ultrafast Electron Cooling and Decay in Monolayer WS <sub/>2</sub> Revealed by Time- and Energy-Resolved Photoemission Electron Microscopy

    摘要: A comprehensive understanding of the ultrafast electron dynamics in two-dimensional transition metal dichalcogenides (TMDs) is necessary for their applications in optoelectronic devices. In this work, we contribute a study of ultrafast electron cooling and decay dynamics in the supported and suspended monolayer WS2 by time- and energy-resolved photoemission electron microscopy (PEEM). Electron cooling in the Q valley of the conduction band is clearly resolved in energy and time, on a timescale of 0.3 ps. Electron decay is mainly via defect trapping process on a timescale of several picoseconds. We observed that the trap states can be produced and increased by laser illumination under ultra-high vacuum, and the higher local optical-field intensity led to the faster increase of trap states. The enhanced defect trapping could significantly modify the carrier dynamics and should be paid attention to in photoemission experiments for two-dimensional materials.

    关键词: transition metal dichalcogenides,defect trapping,ultrafast dynamics,energy-resolved,electron cooling,photoemission electron microscopy

    更新于2025-09-23 15:21:01

  • Deuterium Kinetic Isotope Effect in the Photocatalyzed Dissociation of Methanol on TiO2(110)

    摘要: Deuterium kinetic isotope effect (KIE) in the photochemistry of methanol on TiO2(110) has been studied to find the rate-determining step (RDS) and understand the reaction mechanism using two-photon photoemission spectroscopy (2PPE). Deuterium substitution of the methyl hydrogen has little effect on the kinetics of this reaction, suggesting that neither the break of the C-H(D) bond nor the transfer of H(D) atoms to the bridging sites is the RDS in the transformation of methanol into formaldehyde. In contrast, the reaction rate of MeOH is ~1.3 times of that of MeOD, suggesting that the cleavage of O-H(D) is the RDS in the photocatalyzed dissociation of methanol on TiO2(110). The results contradict with the common fact that C-H(D) is more difficult to break than O-H(D) based on ground state energetics, implying the involvement of photogenerated charge carriers in the reaction of C-H break whereas the cleavage of O-H is likely a thermal reaction. Difference in the activation energy of O-H and O-D dissociation reaction in the methanol/TiO2(110) system has been calculated based on the KIE measurements. Our work is consistent with the fact that methoxy is photocatalytically more reactive than methanol, and suggests that the conversion of methanol into methoxy is crucial in the photochemistry of methanol on TiO2(110) and probably other metal oxide semiconductor surfaces.

    关键词: two-photon photoemission spectroscopy,photocatalyzed dissociation,Deuterium kinetic isotope effect,TiO2(110),methanol

    更新于2025-09-23 15:21:01

  • 2PPE spectroscopy of unoccupied electronic states at CuPc/PTCDA/Ag(111) interfaces

    摘要: The unoccupied electronic structure of stacked layers of copper(II)phthalocyanine (CuPc) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on Ag(111) has been investigated by means of two-photon photoemission (2PPE). We find a rich electronic structure comprising at least five unoccupied electronic states which we identify based on their energetic position and their dispersion in momentum space. More specifically, we observe the first and the second image-potential states of the modified Ag(111) surface, as well as the metal–organic interface state (IS) inherent to the PTCDA/Ag(111) interface. Moreover, two additional molecular features are observed for the CuPc/PTCDA/Ag(111) system which we attribute to an unoccupied molecular orbital (LUMO+2) of CuPc. The 2PPE intensity of the IS exhibits a pronounced dependence on the pump photon energy, which closely follows the optical absorption of the outer molecular layer. This strongly points to charge transfer from the optically excited molecules to the interface state.

    关键词: charge transfer,PTCDA,metal–organic interfaces,CuPc,organic heterosystems,two-photon photoemission

    更新于2025-09-23 15:21:01