修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

150 条数据
?? 中文(中国)
  • One-pot bottom-up fabrication of biocompatible PEGylated WS2 nanoparticles for CT-guided photothermal therapy of tumors in?vivo

    摘要: Background: Tungsten disulfide (WS2), which enjoyed a good potential to be a promising clinical theranostic agent for cancer treatment, is still subject to the tedious synthesis procedure. Methods: Here, we reported a one-pot 'bottom-up' hydrothermal strategy for the fabrication of PEGylated WS2 nanoparticles (NPs). The WS2-PEG nanoparticles were characterized systematically. The CT imaging and photothermal therapy against tumor as well as biosafety in vitro and in vivo were also investigated. Results: The obtained WS2-PEG NPs enjoyed obvious merits of good solubility and favorable photothermal performance. WS2-PEG NPs exhibited desirable photothermal ablation ability against cancer cells and cancer cell-bearing mice in vitro and in vivo. MTT assay and histological analysis demonstrated the low cytotoxicity and biotoxicity of WS2-PEG NPs, providing a valid biosafety guarantee for the coming biomedical applications. In addition, thanks to the obvious X-ray attenuation of W atom, the WS2-PEG NPs can also be served as a favorable contrast agent for CT imaging of tumors. Conclusion: WS2-PEG NPs has enjoyed a good potential to be a promising clinical CT-guided photothermal therapeutic agent against cancers.

    关键词: Photothermal therapy,Computed tomography,WS2,Tumor,Nanoparticles

    更新于2025-11-14 17:03:37

  • A pH-responsive zinc (II) metalated porphyrin for enhanced photodynamic/photothermal combined cancer therapy; 一种用于增强光动力/光热协同肿瘤治疗的酸性 刺激响应锌(II)金属卟啉化合物;

    摘要: The acidic tumor microenvironment is triggered by glycolysis in hypoxic condition, which can motivate the pH-responsive system to build certain triggers for efficiently tumor-targeted phototherapy. Additionally, the metalated porphyrin structures are widely studied in biomedical applications due to the favorable properties of high singlet oxygen quantum yield as well as strong fluorescence imaging ability. Herein, a pH-responsive zinc (II) metalated porphyrin (P-4) was designed and synthesized for amplifying cancer photodynamic/photothermal therapy with excellent fluorescence quantum yield (67.4%), superb singlet oxygen quantum yield (84.3%) and desired photothermal conversion efficiency (30.0%). In vitro, the self-assembled P-4 nanoparticles can specifically target to lysosome subcellular site and realize protonated process of dibutaneaminophenyl (DBAP) groups with high photo toxicity. Under single 660 nm laser illumination, the tumor can be ablated completely with no side effects in vivo. This work demonstrates that the pH-responsive P-4 nanoparticles provide a new avenue for highly efficient cancer combination therapy.

    关键词: porphyrin,pH-responsive,NIR absorbance,photothermal therapy,photodynamic therapy

    更新于2025-11-14 15:29:11

  • Photothermal/Photodynamic Therapy with Immune‐Adjuvant Liposomal Complexes for Effective Gastric Cancer Therapy

    摘要: A diagnosis and therapeutic strategy for gastric cancer is developed herein by combining thermosensitive liposomal (TSL)-based photothermal/photodynamics therapy (PTT/PDT) with chemotherapy and adjuvant immunotherapy. IR820, a photothermal agent, paclitaxel (PTX), an antitumor drug, and imiquimod (R837), a Toll-like-receptor-7 agonist, are coencapsulated into a TSL drug delivery system. These formed PTX-R837-IR820@TSL complexes exhibit excellent optical properties, good dispersibility, and stability. Under NIR light irradiation, the measurement of singlet oxygen production and thermal efficiency indicate promising potential of PTX-R837-IR820@TSL complexes for PTT and PDT. Confocal microscopy and small animal NIR imaging demonstrate tumor targeting ability of the liposomal complexes to gastric cancer cells. In vitro cell viability assays and in vivo animal experiments show prominent antitumor efficiency of PTX-R837-IR820@TSL complexes upon NIR light irradiation. This excellent therapeutic efficacy is attributed to the simultaneous chemotherapy and PTT/PDT. Furthermore, the liposomal complexes under NIR irradiation would ablate tumors to generate a pool of tumor-associated antigens, which is able to promote strong antitumor immune responses in the presence of those R837-containing liposomal complexes acted as adjuvant. These results indicate that the multifunctional liposomal complexes could realize a remarkable synergistic therapeutic outcome in gastric carcinoma.

    关键词: gastric carcinoma,photothermal therapy,adjuvant immunotherapy,photodynamics therapy

    更新于2025-11-14 15:26:12

  • Proof of concept of plasmonic thermal destruction of surface cancers by gold nanoparticles obtained by green chemistry

    摘要: A greener approach for the design of surface plasmon resonant gold nanoparticles has been obtained with a hydrosoluble fraction of an endemic asteraceae medicinal plant. This medicinal plant is originated from Indian Ocean and demonstrates its bioreducing activity in the design of stable green nanomedicine in aqueous media. This article describes the preclinical assessment of the efficacy of these novel nanocandidates on murine model by intratumoral and intravenous injections. It definitely demonstrates two key points in the treatment of cancer: 1) optimization of the tumor microenvironment targeting by specific ligands for a limited damage on healthy tissue, 2) the need to screen the specific irradiation dose (time, power) taking into account the type of tumor.

    关键词: Medicinal plant,Hyperthermia,Green nanomedicine,Plasmonic photothermal therapy,Gold nanoparticle

    更新于2025-11-14 15:25:21

  • Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-photothermal Combination Therapy Towards Breast Cancer

    摘要: Gold nanorods (GNRs) and doxorubicin (DOX) were loaded into the lumen of halloysite nanotubes (HNTs) via a rapid synthesis process (2 min) and physical adsorption. The targeting molecules of folic acid (FA) are then conjugated to HNTs via reactions with bovine serum albumin (BSA). The formation of GNRs in HNTs was verified by different techniques. The Au-HNTs-DOX@BSA-FA shows maximum of 26.8 oC temperature rising after 8 min 808-nm laser irradiation under 0.8 W cm-2. The functionalized HNTs exhibited stronger chemotherapeutic effect under laser irradiation, since the laser could promote the release of DOX and temperature rising. Au-HNTs-DOX@BSA-FA treated MCF-7 cells exhibited survival rate of 7.4% after laser irradiation. Au-HNTs-DOX@BSA-FA treatment do not induce an obvious toxicity in blood biochemistry, liver and kidney function in normal mice. In vivo chemo-photothermal treatment towards 4T1-bearing mice suggested Au-HNTs-DOX@BSA-FA exhibited remarkable tumor-targeted efficiency and good controlled-release effect for DOX. Also, the nanoparticles exhibited a rapid photothermal performance and inhibiting ability of the growth of tumor. Due to the synergistic effect of chemical-photothermal therapy, the toxicity of DOX to normal tissues was reduced on the premise of ensuring the same curative effect with a low dosage of 0.32 mg kg-1. This novel chemo-photothermal therapy nanoplatform provided a safe, rapid, effective, and cheap choice for treatment of breast tumor both in vitro and in vivo.

    关键词: doxorubicin,photothermal therapy,halloysite nanotubes,chemo-photothermal therapy,gold nanorods

    更新于2025-09-23 15:23:52

  • Intratumorally Injected Photothermal Agent-Loaded Photodynamic Nanocarriers for Ablation of Orthotopic Melanoma and Breast Cancer

    摘要: Traditional chemotherapy of cancers may lead to serious adverse reactions due to little drug distribution in tumors. Here, a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) was used for local treatment of orthotopic melanoma and breast cancer via intratumoral (i.t.) injection of photothermal agent-loaded photodynamic nanocarriers. A hydrophobic derivative of indocyanine green, DCC, was synthesized and entrapped into a pH-sensitive photosensitizer-core copolymer, PDCZP, to form DCC@PDCZP. The nanocarriers showed remarkable fluorescence, high singlet oxygen quantum yields, and strong photothermal effect. Flow cytometry suggested that the nanocarriers were efficiently internalized by cancer cells. Near infrared thermal imaging and fluorescence self-imaging showed that the i.t. injected DCC@PDCZP mainly remained in the tumors but the intravenous (i.v.) nanocarriers were distributed a little. One i.t. injection of DCC@PDCZP was enough to ablate the orthotopic B16-F10 and 4T1 mouse tumors under 830 nm and 660 nm irradiation at 4 hours post-injection. More importantly, no local recurrences were found though scabs were formed at 9 days post-treatment. The major anticancer mechanisms included improvement of cancer cell necrosis due to hyperthermia, inhibition of neovascularization, and enhancement of cell apoptosis. The i.t. injection of PTT/PDT nanoformulations is thus a promising local treatment of superficial tumors.

    关键词: zinc phthalocyanine,intratumoral injection,melanoma,indocyanine green,breast cancer,photodynamic therapy,photothermal therapy

    更新于2025-09-23 15:23:52

  • Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy

    摘要: Molybdenum disul?de (MoS2)-based drug delivery systems have shown considerable potential in cancer nanomedicines. In this work, a multifunctional nanoplatform comprising MoS2 nanosheets decorated with copper sul?de (CuS) and further functionalized with polyethylene glycol (PEG) is reported. The resultant material has a particle size of approximately 115 nm, and can be loaded with doxorubicin (DOX) to a loading capacity of 162.3 mg DOX per g of carrier. Drug release is triggered by two stimuli (near infrared (NIR) irradiation and pH), and the carrier is shown to have excellent colloidal stability. The presence of both MoS2 and CuS leads to very high photothermal conversion ef?ciency (higher than with MoS2 alone). In vitro experiments revealed that the blank CuS-MoS2-SH-PEG carrier is biocompatible, but that the synergistic application of chemo-photothermal therapy (in the form of CuS-MoS2-SH-PEG loaded with DOX and NIR irradiation) led to greater cell death than either chemotherapy (CuS-MoS2-SH-PEG(DOX) but no NIR) or photothermal therapy (CuS-MoS2-SH-PEG with NIR). A cellular uptake study demonstrated that the nanoplatform can ef?ciently enter tumor cells, and that uptake is enhanced when NIR is applied. Overall, the functionalized MoS2 material developed in this work exhibits great potential as an ef?cient system for dual responsive drug delivery and synergistic chemo-photothermal therapy. The route employed in our work thus provides a strategy to enhance photothermal ef?cacy for transition metal dichalcogenide drug delivery systems.

    关键词: Chemotherapy,Drug delivery,MoS2,Photothermal therapy,Synergistic therapy

    更新于2025-09-23 15:23:52

  • 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy

    摘要: Photothermal therapy (PTT) has shown significant potential for anti-cancer modality. In this report, according to our best knowledge, we explore for the first time Ti2C-based MXene as a novel, highly efficient and selective agent for photothermal therapy (PTT). Ti2C superficially modified with PEG was obtained from the layered, commercially available Ti2AlC MAX phase in the process of etching aluminum layers using concentrated HF, and characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HREM) as well as X-Ray photoelectron spectroscopy for chemical analysis (ESCA-XPS). The PEG-coated Ti2C flakes showed a satisfactory photothermal conversion efficacy (PTCE) and good biocompatibility in wide range of the tested concentrations. Through in vitro studies, the PEG-modified Ti2C demonstrated notable NIR-induced ability to cancerous cells’ ablation with minimal impact on non-malignant cells up to the concentration of 37.5 μg ml-1. The applied doses of Ti2C_PEG in our work were even 24 times lower comparing other MXene-based photothermal agents. This work is expected to expand the utility of 2D MXenes to biomedical applications through the development of an entirely novel agents for photothermal therapy.

    关键词: photothermal therapy,biological activity,light-to-heat conversion,2D Ti2C MXenes,anticancer therapy

    更新于2025-09-23 15:23:52

  • Contemporary Polymer-Based Nanoparticle Systems for Photothermal Therapy

    摘要: Current approaches for the treatment of cancer, such as chemotherapy, radiotherapy, immunotherapy, and surgery, are limited by various factors, such as inadvertent necrosis of healthy cells, immunological destruction, or secondary cancer development. Hyperthermic therapy is a promising strategy intended to mitigate many of the shortcomings associated with traditional therapeutic approaches. However, to utilize this approach effectively, it must be targeted to specific tumor sites to prevent adverse side effects. In this regard, photothermal therapy, using intravenously-administered nanoparticle materials capable of eliciting hyperthermic effects in combination with the precise application of light in the near-infrared spectrum, has shown promise. Many different materials have been proposed, including various inorganic materials such as Au, Ag, and Germanium, and C-based materials. Unfortunately, these materials are limited by concerns about accumulation and potential cytotoxicity. Polymer-based nanoparticle systems have been investigated to overcome limitations associated with traditional inorganic nanoparticle systems. Some of the materials that have been investigated for this purpose include polypyrrole, poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), polydopamine, and polyaniline. The purpose of this review is to summarize these contemporary polymer-based nanoparticle technologies to acquire an understanding of their current applications and explore the potential for future improvements.

    关键词: polydopamine,polypyrrole,polymeric nanoparticle,photothermal therapy,polyaniline

    更新于2025-09-23 15:23:52

  • Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy

    摘要: Ultrasound molecular imaging as a promising strategy, which involved the use of molecularly targeted contrast agents, combined the advantages of contrast-enhanced ultrasound with the photothermal effect of reduced graphene oxide (rGO). Methods and results: The heparin sulfate proteoglycan glypican-3 (GPC3) is a potential molecular target for hepatocellular carcinoma (HCC). In this study, we covalently linked biotinylated GPC3 antibody to PEGylated nano-rGO to obtain GPC3-modified rGO-PEG (rGO-GPC3), and then combined rGO-GPC3 with avidinylated nanobubbles (NBs) using biotin-avidin system to prepare NBs-GPC3-rGO with photothermal effect and dispersibility, solubility in physiological environment. The average size of NBs-GPC3-rGO complex was 700.4±52.9 nm due to the polymerization of biotin-avidin system. Scanning electron microscope (SEM) showed NBs-GPC3-rGO attached to human hepatocellular carcinoma HepG2 cell. The ultrasound-targeted nanobubble destruction (UTND) technology make use of the physical energy of ultrasound exposure for the improvement of rGO delivery. Compared with other control groups, the highest nanobubble destruction efficiency of NBs-GPC3-rGO was attributed to the dissection effect of rGO on UTND. This is a positive feedback effect that leads to an increase in the concentration of rGO around the HepG2 cell. So NBs-GPC3-rGO using UTND and near-infrared (NIR) irradiation resulted in cell viability within 24 h, 48 h, 72 h lower than other treatment groups. Conclusion: This work established NBs-GPC3-rGO as an ultrasonic photothermal agent due to its suitable size, imaging capability, photothermal efficiency for visual photothermal therapy in vitro.

    关键词: ultrasound-targeted nanobubble destruction,photothermal therapy,glypican-3,reduced graphene oxide,HepG2 cell

    更新于2025-09-23 15:23:52