- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Regulated Crystallization of Efficient and Stable Tin-based Perovskite Solar Cells via Self-sealing Polymer
摘要: Tin-based perovskite solar cells (PVSCs) have emerged as the most promising lead-free perovskite materials owing to their superior optoelectronic properties. However, the deficiency of accurate control for the tin-based perovskite crystallization process increases the possibility of unexpected perovskite film morphology and defects, resulting in inferior power conversion efficiency (PCE). Meanwhile, the poor environmental stability of tin-based perovskite film hinders its further development. In this work, a unique polymer [poly(ethylene-co-vinyl acetate) (EVA)] is introduced into anti-solvent during spin coating of formamidinium tin tri-iodide (FASnI3) precursor solution. The C=O groups contained in EVA have a powerful Lewis acid-base complexation with uncoordinated tin atoms in perovskite grains, which can greatly improve grain size, optimize grain orientation and decrease surface defects of FASnI3 films. This strategy offers an impressive PCE of 7.72% with favorable reproducibility. More importantly, the PVSCs devices based on FASnI3-EVA absorber have a self-encapsulation effect, which exhibits distinguished moisture and oxygen barrier property, thereby retaining 62.4% of the original efficiency value after aging for 48 h in air environment with humidity of 60%. Such convenient strategy provides a new inspiration for the establishment of stable and high performance tin-based PVSCs.
关键词: environmental stability,self-encapsulation,poly(ethylene-co-vinyl acetate),crystallization,tin-based perovskite solar cells
更新于2025-09-16 10:30:52
-
Chemical Structure of EVA Films Obtained by Pulsed Electron Beam and Pulse Laser Ablation
摘要: Poly(ethylene-co-vinyl acetate) (EVA) films were deposited for the first time using physical methods. The chemical structure of the films obtained using two techniques, pulsed electron beam deposition (PED) and pulsed laser deposition (PLD), was studied by attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Whilst significant molecular degradation of the EVA films was observed for the PLD method, the original macromolecular structure was only partially degraded when the PED technique was used, emphasizing the superiority of the PED method over PLD for structurally complex polymers such as EVA. Optical and scanning electron microscopic observations revealed compact and smooth EVA films deposited by pulsed electron beam ablation as opposed to heterogeneous films with many different sized particulates obtained by PLD.
关键词: chemical structure analysis,poly(ethylene-co-vinyl acetate),pulsed laser deposition,pulsed electron beam deposition
更新于2025-09-11 14:15:04