修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2014
研究主题
  • solar cell
  • hybrid-resonant PWM switching
  • PWM switching
  • MPPT
  • resonant converter
  • solar power
  • Geostationary satellite images
  • Global and direct solar radiation
  • Meteorological station
  • validation
应用领域
  • Electrical Engineering and Automation
  • New Energy Science and Engineering
  • Optoelectronic Information Science and Engineering
  • Optoelectronic Information Materials and Devices
  • Applied Physics
机构单位
  • National technical University “Kharkiv Polytechnic Institute”
  • University of évora
  • Fraunhofer Institute for Solar Energy Systems ISE
  • University of Tunis El Manar
  • Zeal College of Engineering and Research
  • Northern (Arctic) Federal University named after M.V. Lomonosov
  • Cochin University College of Engineering
  • National Renewable Energy Laboratory
  • NED University
  • Universidad Veracruzana
4089 条数据
?? 中文(中国)
  • AIP Conference Proceedings [Author(s) PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AUTOMOTIVE INNOVATION GREEN ENERGY VEHICLE: AIGEV 2018 - Kuantan, Malaysia (25–26 July 2018)] - Chemical bath deposition of In2S3 thin films as promising material and buffer layer for solar cells

    摘要: The copper(I) and indium thin films are obtained by chemical bath deposition (CBD). Their elemental composition and microstructure were particularly studied by means of the x-ray photoelectron spectroscopy (XPS). The change in the surface microstructure of thin films depending on the temperature and the composition of reaction bath were determined by means of scanning electron microscopy (SEM).

    关键词: chemical bath deposition,solar cells,thin films,buffer layer,In2S3

    更新于2025-11-21 11:20:48

  • Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells

    摘要: Post deposition treatments (PDT) by alkali fluorides applied to chalcopyrite-based absorbers have produced record efficiencies in thin-film solar devices in the past few years and recently the efficiency of 22.6 % was achieved with Cu(In,Ga)Se2 (CIGS) using rubidium fluoride (RbF) PDT. However, the effects of RbF-PDT towards changes in its interfacial and grain boundary (GB) properties are still not fully understood. In this work, cells with efficiency higher than 21% are investigated by combination of atom probe tomography (APT) and transmission electron microscopy (TEM) to show how changes in GB and interface chemistry may facilitate high efficiencies. APT studies, carried out at the interface between CIGS absorber and solution-grown CdS buffer layer, show In enrichment and Cu depletion along with traces of Rb. Our APT studies reveal higher amounts of Rb (1.5 at. %) and lower amounts of Na and K (<0.5 at. %) at GBs as compared with previous studies (on non-PDT samples) thus indicating substitution of Na and K by Rb. However, concentration of all alkali elements inside the grain bulk is below detection limit of APT. The concentration of Rb at the GBs in CIGS is measured depth-dependent using both APT and TEM, which consistently shows the increase in Rb towards the Mo back contact. In addition, a pronounced Cu depletion is observed at the GBs which might enhance hole-barrier properties of the GBs, thus improving charge carrier collection and hence the overall efficiency of the device. Thus, understanding effects of RbF-PDT at the atomic scale provides new insights concerning the further improvement of CIGS absorber and interfaces.

    关键词: Cu(In,Ga)Se2,Thin-film solar cell,heterojunction,atom probe tomography,post deposition treatments,transmission electron microscopy

    更新于2025-11-21 11:20:48

  • Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface

    摘要: Low-band-gap metal halide perovskite semiconductor based on mixed Sn/Pb is a key component to realize high-ef?ciency tandem perovskite solar cells. However, the mixed perovskites are unstable in air due to the oxidation of Sn2+. To overcome the stability problem, we introduced N-(3-aminopropyl)-2-pyrrolidinone into the CH3NH3Sn0.5Pb0.5IxCl3-x thin ?lm. The carbonyl group on the molecule interacts with Sn2+/Pb2+ by Lewis acid coordination, forming vertically oriented 2D layered perovskite. The 2D phase is seamlessly connected to the bulk perovskite crystal, with a lattice coherently extending across the two phases. Based on this 2D/3D hybrid structure, we assembled low-band-gap Sn-based perovskite solar cells with power conversion ef?ciency greater than 12%. The best device was among the most stable Sn-based organic-inorganic hybrid perovskite solar cells to date, keeping 90% of its initial performance at ambient condition without encapsulation, and more than 70% under continuous illumination in an N2-?lled glovebox for over 1 month.

    关键词: power conversion efficiency,2D/3D interface,stability,Sn/Pb-based,perovskite solar cells

    更新于2025-11-21 11:18:25

  • Electric field assisted spray coated lead free bismuth iodide perovskite thin film for solar cell application

    摘要: Solution-processed Methylammonium iodo bismuthate (MBI) perovskite solar cell is fabricated by spray technique with changed applied voltages from 0 to 1000 V during the deposition of MBI thin film. The morphology and surface roughness of MBI films are influenced significantly by the electric field during film deposition. It is attributed to improve the atomization of spray droplets due to process of coulomb fission. The surface roughness of MBI film is reduced from 39 to 19 nm with increased applied voltages during the deposition from 0 V and 1000 V, respectively. A strong absorption band is observed ~500 nm for all MBI films. The MBI perovskite solar cell is showed enhancement in the efficiency with the maximum current density 2.33 mA/cm2 at 1000 V applied voltage during the deposition. The improvement in photovoltaic characteristics with applied voltage during the film deposition is attributed to the formation of more uniform film with improved surface morphology and roughness, resulting in efficient electron transfer and reduced recombination of charge carrier at grain boundaries.

    关键词: Methyl ammonium bismuth (III) iodide,Spray deposition,Perovskite solar cell,Electric filed,Lead free perovskite

    更新于2025-11-21 11:18:25

  • Enhanced working efficiency of Si solar cell by water induced nano-porous thermal cooling layer

    摘要: Nano-porous thermal cooling layer (TCL) of thickness 14 mm beneath a Si solar cell reduces its working temperature from 82 °C to 68 °C This reduced working temperature increase its absolute working ef?ciency by 0.75%. X-Ray diffraction analysis of the material used in TCL shows its amorphous nature. The SEM images con?rm interconnected carbon particles are forming micro-channels within the TCL. Further FESEM analysis has been done to examine the in-depth structure of the carbon particles and shows the nano-porous topography within the particle. The porosity of used TCL is examined by BET measurement which con?rms the highly porous nature of the TCL having surface area of the order of 798.35 m2 g?1 with average pore size of 2.3 nm. The induced water concentration (0.049 to 0.49 ml cm?3) dependent enhanced cooling ef?ciency of nano-porous TCL has been studied in detail. The use of water saturated (0.49 ml cm?3) TCL (14 mm thick) further decreases the working temperature of the device from 68 °C to 58 °C and the device works below this temperature for around three hours. Further, in order to enhance the effective time duration, the TCL thickness (4 mm to 26 mm) dependent cooling ef?ciency of water saturated TCL has been analyzed in detail. Use of optimized water saturated TCL beneath the solar cell improve its working ef?ciency from 11.4% (at 82 °C) to 12.69% (at 58 °C) which shows an absolute and relative enhancement of 1.29% and 11.32%, respectively in cell ef?ciency. Finally, thermal analyses of TCL and water cooling mechanism in it have been discussed in detail.

    关键词: ef?ciency enhancement,Si solar cell,thermal cooling layer,cooling plateau,cooling agent,nano-porous

    更新于2025-11-21 11:18:25

  • A carbon nanotube-iron (III) oxide nanocomposite as a cathode in dye-sensitized solar cells: Computational modeling and electrochemical investigations

    摘要: Here is the evaluating result on the applicability of the multi-walled carbon nanotube (MWCNT) and a-iron (III) oxide (a-Fe2O3) nanocomposite as a cathode material in dye-sensitized solar cells (DSCs). The morphology and the structure of the MWCNT/a-Fe2O3 nanocomposite have characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray elemental mapping analysis. Moreover, the electrochemical performance of the nanocomposite has studied toward the activity of Iˉ/I3ˉ redox couple which represents high current density, low peak-to-peak separation, low charge-transfer resistance, and almost 100% stable response signal. Furthermore, the computational modeling employing the molecular mechanics (MM) and the restricted-Hartree Fock/semiempirical parameterization (RHF/PM6) methods reveals that the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the HOMO-LUMO energy gap of the modeled nanocomposite are as (cid:1)6.88, (cid:1)3.62, and 3.26 eV, respectively. These properties match with the electronic-level domino of the DSC structure. Finally, the DSC device has fabricated using N719-sensitized TiO2 photoanode and MWCNT/a-Fe2O3 counter electrode, presenting the open-circuit potential, the short-circuit current density, and the power-conversion ef?ciency of 0.7 V, 20.37 mA cmˉ2, and 6.0%, respectively. This study successfully approves the potential of the nanocomposite as a cathode material in iodine-based dye-sensitized solar cells.

    关键词: Dye-sensitized solar cell,Nanocomposite,Carbon nanotube,Molecular mechanics,RHF/PM6,Iron (III) oxide

    更新于2025-11-21 11:18:25

  • Color Tunable Pigments with high NIR reflectance in Terbium doped Cerate systems for Sustainable Energy Saving Applications

    摘要: Color tunable pigments from yellow to red hues were developed in Tb doped A2CeO4 (A = Sr and Ba) system by the conventional ceramic route. The developed pigments were analysed for their phase purity, chemical oxidation state, elemental analysis, morphology and optical properties by various advanced techniques. The Ba substitution in Sr2-xCe0.6Tb0.4O4 gently shifts the absorption edge to higher wavelengths producing bright yellows to reddish orange colors whereas, the Tb substitution in Ba2Ce1-xTbxO4 allows abrupt shift in the absorption edge to longer wavelengths leading to intense red hues. The chemical oxidation state analysis indicates the modifications of Tb3+ concentrations in both the environments due to metal to metal charge transfer transitions induced by lattice expansion. Typically the compositions SrBaCe0.6Tb0.4O4 (yellow; b* = 75.36, R = 91%) and Ba2Ce0.4Tb0.6O4 (red; a* = 30.09, R = 89%) exhibit brilliant coloristic and reflectance properties. The applicability studies revealed good coloring performance in the polymer matrix and on concrete slab with high solar reflectance. Further, the pigments are proven to be weather resistant in acid/alkali/moisture atmospheres with good thermal stability. These color characteristics with high solar reflectance of sustainable and eco-friendly compositions make them promising colorants for exterior coating formulations to mitigate the cooling energy consumption.

    关键词: Yellow and Red pigments,Cerium,Terbium,Solar reflectance

    更新于2025-11-21 11:18:25

  • Hollow hierarchical structure Co0.85Se as efficient electrocatalyst for the triiodide reduction in dye-sensitized solar cells

    摘要: The exploration of nonprecious metal-based electrocatalysts with high efficiency for the triiodide reduction is critical for the practical applications of the dye-sensitized solar cells. Herein, we develop a facile one-step hydrothermal method to synthesize hollow hierarchical structure Co0.85Se. Under the methanol-water reaction system, the product named as hollow hierarchical structure Co0.85Se-M has the largest specific surface area (215.36 m2 g?1) and the best crystallinity than other products obtained from other alcohol-water reaction systems. When this electrocatalyst is applied as a counter electrode for the dye-sensitized solar cells, it exhibits a small peak-to-peak separation (Epp, 97 mV) for the reduction of I3?/I? redox couple. It is found that the catalytic activity of Co0.85Se is closely dependent on the crystallinity. Moreover, the reactivity pathway is identified by density functional theory, which confirms that triiodide is reduced to iodide ion on Co0.85Se with a smaller energy barrier (~0.65 eV) than on Pt (~1.18 eV). Both experimental and theoretical results demonstrate Co0.85Se-M as an ideal counter electrode material for the dye-sensitized solar cells with a higher power conversion efficiency (8.76%) than Pt counter electrode (7.20%).

    关键词: Dye-sensitized solar cells,Hollow hierarchical structure,Cobalt selenides,Electrocatalytic activity,Triiodide reduction

    更新于2025-11-21 11:03:13

  • Investigation of valence plasmon excitations in GMZO thin film and their suitability for plasmon-enhanced buffer-less solar cells

    摘要: The approach of eliminating buffer layer in conjunction with plasmon-enhanced transparent conduction oxide (TCO) layer is an attractive methodology to realize low-cost ultrathin buffer-less solar cells (SCs) by introducing plasmon-enhanced absorption and reduced fabrication steps. Here, we report a novel method to generate wide-band sputter-stimulated plasmonic feature in Ga-doped-MgZnO (GMZO) thin-films, which are observed due to the different metallic and metal-oxide nanoclusters formation. Through an extensive analysis of photoelectron spectroscopy, spectroscopic ellipsometry, and field-emission scanning electron microscope measurements the evaluation of plasmonic features and correlation of them with various nanoclusters inside GMZO thin-film is performed. Additionally, the suitability and expected performance of plasmon-enhanced GMZO thin-film based buffer-less SCs are probed through; 1) band-offset analysis at the plasmon enhanced-GMZO/CIGSe heterojunction; 2) simulation studies to analyze the effect of conduction band-offset (CBO) on the performance of the buffer-less SCs; 3) predicting the performance of the buffer-less SC using the parameters of GMZO thin-films with varying CBO, and 4) envisaging the concept of ultrathin buffer-less SC with calculated CBO and absorber layer thickness (300 nm) for ultrathin SCs. Moreover, at the experimentally calculated band-offset with ultrathin absorber layer thickness (300 nm), theoretically calculated buffer-less SC performance parameters estimated to be open-circuit voltage (Voc): 0.75 V, short-circuit current density (Jsc): 17.29 mA/cm2, fill-factor (FF): 80.5%, and efficiency (Eff): 10.46%.

    关键词: Ultrathin solar cells,UPS,CIGSe,Plasmons

    更新于2025-11-21 11:03:13

  • Investigation of valence electron excitation and plasmonic enhancement in sputter grown NMZO thin films: For energy harvesting applications

    摘要: We report a novel approach of sputter-stimulated plasmonic generation in Na-doped MgZnO (NMZO) thin films. Sputtering of material during film growth by utilizing secondary direct-coupled ion-source present in dual-ion beam sputtering system leads to the generation of nanoclusters of its constituent elements due to different sputtering-out rates of various elements present in the films. The authentication of plasmonic generation in NMZO is conducted as follows a) identification of plasmonic signature in electron energy loss spectra obtained by ultraviolet photoelectron spectroscopy measurement, b) valence bulk, valence surface, and particle plasmon resonance energy calculations are performed, and each plasmon peak is indexed with corresponding plasmon energy peak of different nanoclusters, and c) spectroscopic ellipsometric measurement is deployed to verify plasmonic behavior by investigating different optical properties. Additionally, incorporation of the plasmonic feature along with alkali metals plays a crucial role in the improvement of the performance of solar cells. Therefore, plasmon enhanced NMZO as a backscattering layer in between CIGSe/back contact is probed to ascertain the additional benefits of 1) Na incorporation into the absorber layer as a result of the Na diffusion from the NMZO layer, and 2) improvement in the morphology of the CIGSe thin film with the incorporation of NMZO layer in between the back-contact and CIGSe. The diffusion of Na into the absorber layer is probed by deploying secondary ion mass spectroscopy measurements, and improvement in the morphology of CIGSe with the incorporation of NMZO layer between the back-contact/absorber is investigated using field-emission scanning electron microscope analysis.

    关键词: UPS,NMZO,Ultrathin solar cells,Plasmons,Sputtered

    更新于2025-11-21 11:03:13