- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Non‐Stoichiometry Induced Switching Behavior of Ferroelectric Photovoltaic Effect in BaTiO <sub/>3</sub> Ceramics
摘要: Ferroelectric photovoltaic (FPV) effect has been studied among a series of non-stoichiometric BaTiO3 (Ba/Ti ? 0.92–1.05) ceramic chips prepared by tape casting method. The FPV performance increases abruptly when the Ba/Ti molar ratio deviates from the stoichiometry within 1%. Meanwhile, a photocurrent direction switching behavior is observed between Ti-excess and Ba-excess samples. The TEM analysis shows their significant difference in grain-boundary (GB), where abnormal GB with a width of 10–15 nm is observed in Ba-excess sample. The photocurrent switching phenomenon is described to the competition between the asymmetrical Schottky barriers induced PV effect and intrinsic FPV effect. Widen GB in Ba-excess BaTiO3 ceramics restrains the intrinsic FPV effect and results in the switching behavior. This study offers direct evidence of the vital role of GB in FPV effect and may promote the development of photovoltaic devices.
关键词: ferroelectric photovoltaic,barium titanate,non-stoichiometry,switching behavior
更新于2025-11-21 11:03:13
-
Electrical conductivity and conduction mechanisms in (Na <sub/>0.5</sub> Bi <sub/>0.5</sub> TiO <sub/>3</sub> ) <sub/>1?x</sub> (BiScO <sub/>3</sub> ) <sub/>x</sub> (0.00 ≤ <i>x</i> ≤ 0.25) solid solutions
摘要: The electrical properties of (Na0.5Bi0.5TiO3)1-x(BiScO3)x (NBT-BS, 0.00 ≤ x ≤ 0.25) solid solutions are established by ac impedance spectroscopy and electromotive force transport number measurements. The bulk conductivity decreases with increasing BS incorporation but the oxide-ion transport number remains high (≥0.85) over a wide compositional range 0.00 ≤ x ≤ 0.15 and drops to ≈0.7 for x ≥ 0.20. NBT-BS solid solutions can only present either predominant oxide-ion conduction or mixed ionic-electronic conduction behaviour, indicating that oxide-ion conduction cannot be fully eliminated by incorporation of BS. This is in contrast from our previous study where incorporation of ≈7% BiAlO3 (BA) can fully suppress the oxide-ion conduction in NBT. The conductivity–composition relationships of NBT-BS solid solutions are attributed to a competing effect from lattice expansion, which enlarges the channel for oxygen ion migration, with trapping between B-site acceptor ions, Sc'Ti, and oxygen vacancies, V??O, which decreases oxygen ion migration. Comparisons between NBT-BS, NBT-BA and NBT-BiGaO3 (BG) solid solutions suggest that small acceptor ions on the B-site are more effective in trapping oxygen vacancies and consequently more effective to suppress the oxide-ion conduction and thus reduce dielectric loss at elevated temperatures.
关键词: transport number,electrical conductivity,solid solutions,sodium bismuth titanate,oxide-ion conduction,conduction mechanisms,impedance spectroscopy,BiScO3
更新于2025-11-14 17:28:48
-
Luminescence and electrical properties of Eu-modified Bi <sub/>0.5</sub> Na <sub/>0.5</sub> TiO <sub/>3</sub> multifunctional Ceramics
摘要: The Eu3+ modified Bi0.5Na0.5TiO3 (BNT) ceramics have been fabricated by the solid-state reaction method. The impact of Eu3+ doping on the structure, photoluminescence and electrical properties has been studied by XRD, SEM, PL spectra and LCR meter. X-ray diffraction analysis reveals that the crystal structure of the samples is well matched with the trigonal perovskite, and the optimal temperature of pre-sintering is 880°C. The Eu3+ doped BNT ceramics show excellent red fluorescence at 614nm corresponding to the 5D0→7F2 transition of Eu3+ under 466nm excitation and relatively long fluorescence lifetime. The BNT-0.02Eu ceramic density is up to 5.68g/cm3 and the relative density is up to 94.6% with sintering temperature 1075°C. The piezoelectric constant (d33) of samples has been significantly improved up to 110pC/N by Eu3+ doping. The BNT-0.03Eu ceramic pre-sintered at 880°C and sintered at 1050°C has good dielectric properties and excellent luminescence properties. Eu3+ doped BNT ceramics make it potential applications for novel integrated optical-electro and multifunctional devices.
关键词: luminescence,electrical properties,Bismuth sodium titanate (Bi0.5Na0.5TiO3),lead-free ceramics
更新于2025-11-14 17:28:48
-
Double-layered hierarchical titanate and its attaching and splitting mechanism
摘要: Double-layered hierarchical titania materials exhibit outstanding properties. However, most hydrothermal synthesis methods of bilayer hierarchical titania materials are time-consuming and high alkali-consuming. In this study, a less alkali-consuming one-pot method was developed to synthesize bilayer hierarchical titanate, specifically, 1D nanoarray layer and 3D hierarchical layer. Morphologies of the composites can be manipulated by varying hydrothermal conditions and introducing titanate nuclei based on the attachment rule and splitting mechanism. More importantly, splitting phenomena were observed and confirmed in both nanosheet-to-nanowire transformation process and nanowire-to-nanotube transformation process. It was firstly confirmed that the driving force of the splitting process is the transformation from amorphous state titanate to crystalline state titanate.
关键词: 1D nanostructures,Splitting mechanism,Hierarchical titanate,Attaching mechanism
更新于2025-11-14 17:03:37
-
Efficient removal of cationic dyes from water by a combined adsorption-photocatalysis process using platinum-doped titanate nanomaterials
摘要: In this study, two types of titanate nanomaterials (TNMs) including titanate nanosheets (TNS) and titanate nanotubes (TNT) were hydrothermally prepared by controlling reaction times, and then the platinum (Pt)-doped TNMs were fabricated. The photocatalytic performance of as-prepared materials was compared with that of the commercially available TiO2 P25. It was revealed that changing the morphology of TiO2 particles could enhance their adsorption ability and photocatalytic activity for the removal of cationic dyes from water. In particular, all prepared materials displayed greater removal of methylene blue than of P25 through the synergy of adsorption and photocatalysis; however, such an effect was not so pronounced for anionic dyes. For cationic dyes (methylene blue and rhodamine B) and anionic dyes (methyl orange and naphthol blue–black), TNT presented higher photocatalytic activity than TNS. The TNMs, after Pt doping, significantly enhanced photocatalytic activity compared to the pristine ones. Remarkably, 0.5% by weight Pt-doped TNS achieved 100% removal of methylene blue and rhodamine B after 120 min and 140 min of UV irradiation, respectively, outperforming P25, although Pt-doped TNMs showed lower photocatalytic performance than P25 for anionic dyes.
关键词: Photocatalysis,Cationic dyes,Titanate nanomaterials,Adsorption,Platinum doping
更新于2025-11-14 15:13:28
-
Magnetically Recoverable PEI/Titanate@Fe3O4 Photocatalysts: Fabrication and Photocatalytic Properties
摘要: The magnetically separable ternary polyetherimide/titanate@Fe3O4 (PTF) photocatalysts of special heterostructure between magnetite (Fe3O4) microspheres and titanates nanosheets modified by polyetherimide (PEI) were successfully fabricated via a simple facile hydrothermal deposition method. The as-prepared photocatalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Transmission electron microscopy and UV-vis diffuse reflectance spectroscopy etc. The results showed that the as-fabricated material had a structure of Fe3O4 microspheres coated with titanates nanosheets modified by PEI. The special interfacial contact between 3D microsphere and 2D nanosheets in the nanoarchitectures was formed via electrostatic attraction. Furthermore, the resulted photocatalysts were tested by degradation reaction of methylene blue under visible light irradiation and demonstrated an enhanced performance than the pure Fe3O4 microspheres, and the photocatalytic activity enhanced with the molar ratio of Fe3O4 microspheres and modified titanate gradually, which was attributed to the expansion of the surface area and the different electrostatic contact between the Fe3O4 microspheres and titanate nanosheets. Moreover, the obtained results revealed the high yield magnetic separation and efficient reusability of PTF-5 (96.7%) over 3 times reuse.
关键词: titanate,Fe3O4 microspheres,recyclability,photocatalyst,polyetherimide
更新于2025-09-23 15:23:52
-
A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: Insights from photo-electrochemical impedance spectroscopy
摘要: The purpose of this research paper is to highlight the similarities in the kinetic treatment between water photo-oxidation into molecular oxygen and water photo-reduction into molecular hydrogen, using photoelectrodes surface modified by deposition of co-catalysts. Photo-anodes made of TiO2 nanorods surface-covered by crystals of cobalt Zeolitic Imidazolate Framework (ZIF-67), and photo-cathodes made of Rh:SrTiO3 particles surface-modified by adsorption of molecules of trisdioximate hexa-chlorine cobalt (II) clathrochelate (Co(Cl2Gm)3(BCH3)2), have been prepared and used for water photo-oxidation and photo-reduction experiments, respectively. Both photoelectrodes have been characterized by SEM and cyclic voltammetry under illumination conditions. Charge transfer mechanisms have been investigated by photo-electrochemical impedance spectroscopy (PEIS). It is shown that for both systems, the presence of a co-catalyst increases the charge transfer kinetics, and that the trapping resistance is larger than the charge transfer resistance, at any operating potential.
关键词: Water photo-oxidation,Titanium dioxide nanorods,Strontium titanate,Water photo-reduction,ZIF-67 MOF
更新于2025-09-23 15:23:52
-
Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3: Pr3+ red emitting phosphor
摘要: The Pr3+ doped CaTiO3 red emitting phosphor with enhanced PL and ultrahigh temperature sensing was prepared via NaF flux assisted solid-state reaction. All samples had the orthorhombic perovskite phase and no impurity was found. The typical sample mainly had sphere-like morphology with particle size of ~670 nm. The optical bandgap values were ~3.62-3.63eV. The Pr3+ quenching content was 0.6 mol% and the ET mechanism for quenching was the d-d interaction with the critical distance of 26.09 ?. A certain amount of NaF flux could enhance red emission attributed to 1D2→3H4 transition owing to improving the crystallinity of phosphors and reducing point defects near Pr3+ through the substitution of O2- by F- and Ca2+ by Na+. The energy storage trap (oxygen vacancy) near IVCT state played the key role for trapping electrons, accounting for the LAG emission and the average depth of trap was 0.39 eV. The CIE chromaticity coordinates were very close to that of the ideal red light and the CP was as high as 99.98%. The maximal Sa and Sr was as high as ~0.015 K-1 and~ 5.2% K-1, respectively. The thermal induced relaxation between the 3Pj levels and 1D2 level through the IVCT state was supposed to account for the excellent optical temperature sensing. Our work may provide a useful inspiration for developing ultrahigh sensitive optical temperature sensors.
关键词: Praseodymium,Calcium titanate,Optical thermometry,Intervalence charge transfer state
更新于2025-09-23 15:23:52
-
[IEEE 2018 20th International Conference on Transparent Optical Networks (ICTON) - Bucharest (2018.7.1-2018.7.5)] 2018 20th International Conference on Transparent Optical Networks (ICTON) - Thin Films of Barium Strontium Titanate from the Viewpoint of Light-Based Applications
摘要: In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of as-deposited and annealed (at 900 °C) BaSrTiO3 (BST) thin films deposited by RF magnetron sputtering. The members of the series differ by the substrate temperature and additional oxygen to accompany argon in the deposition chamber. The perovskite structure with weak preferred (110) orientation was detected for annealed BST thin films whilst the as-deposited films were amorphous. Dispersive optical properties – refractive indices, absorption coefficients and optical band gaps were determined from transmittance spectra. After annealing refractive indices increase to prove the densification of material accompanied by the thickness shrinkage. Optical band gaps calculated either by Tauc procedure or determined as iso-absorption levels are also found to be deposition dependent.
关键词: absorption coefficient,thin films,barium strontium titanate,refractive index,optical band gap
更新于2025-09-23 15:23:52
-
Reshaping the Second-Order Polar Response of Hybrid Metal–Dielectric Nanodimers
摘要: We combine the field confinement of plasmonics with the flexibility of multiple Mie resonances by bottom-up assembly of hybrid metal-dielectric nanodimers. We investigate the electromagnetic coupling between nanoparticles in heterodimers consisting of gold and barium titanate (BaTiO3 or BTO) nanoparticles through nonlinear second-harmonic spectroscopy and polarimetry. The overlap of the localized surface plasmon resonant dipole mode of the gold nanoparticle with the dipole and higher-order Mie resonant modes in the BTO nanoparticle lead to the formation of hybridized modes in the visible spectral range. We employ the pick-and-place technique to construct the hybrid nanodimers with controlled diameters by positioning the nanoparticles of different types next to each other under a scanning electron microscope. Through linear scattering spectroscopy, we observe the formation of hybrid modes in the nanodimers. We show that the modes can be directly accessed by measuring the dependence of the second-harmonic generation (SHG) signal on polarization and wavelength of the pump. We reveal both experimentally and theoretically that the hybridization of plasmonic and Mie-resonant modes leads to a strong reshaping of the SHG polarization dependence in the nanodimers, which depend on the pump wavelength. We compare the SHG signal of each hybrid nanodimer with the SHG signal of single BTO nanoparticles to estimate the enhancement factor due to the resonant mode coupling within the nanodimers. We report up to two orders of magnitude for the SHG signal enhancement compared to isolated BTO nanoparticles.
关键词: Dielectrics,Second-harmonic generation,Barium Titanate,Polar-dependence,Hybrid nanoantennas,Plasmonics
更新于2025-09-23 15:23:52