- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Radiation Effects in Thinned GaAs Photovoltaics Incorporating DBRs for Improved Radiation Tolerance of Multijunctions
摘要: Blind interference alignment (BIA) can greatly improve the degree of freedom with the infinite signal-to-noise ratio (SNR) assumption. Under the finite SNR condition, noise accumulation can have a significantly negative impact on SNR, inducing severe performance deterioration. In particular, in multi-cell networks, the transmitter to which a user connects can further affect its received SNR and the BIA design. To address such problem, we present a user grouping scheme for reducing noise accumulation in a single cell and analyze the impact of transmitter connections on the user grouping scheme. SNR BIA in a multi-cell network is further proposed, which jointly optimizes the transmitter connection and the user grouping scheme. Extensive simulations demonstrate that the achievable sum rate of SNR BIA is 1.36 times, 1.66 times, and 2.68 times that of data shared BIA, standard BIA, and extended BIA reported in the literature, respectively, and SNR BIA is more robust to user mobility.
关键词: SNR reduced factor,effective degree of freedom,Blind interference alignment,transmitter connection
更新于2025-09-23 15:19:57
-
[IEEE 2019 24th Microoptics Conference (MOC) - Toyama, Japan (2019.11.17-2019.11.20)] 2019 24th Microoptics Conference (MOC) - Nonreciprocity Enhancement of Graphene-on-Si Waveguide using One-Dimensional Photonic Crystal
摘要: Blind interference alignment (BIA) can greatly improve the degree of freedom with the infinite signal-to-noise ratio (SNR) assumption. Under the finite SNR condition, noise accumulation can have a significantly negative impact on SNR, inducing severe performance deterioration. In particular, in multi-cell networks, the transmitter to which a user connects can further affect its received SNR and the BIA design. To address such problem, we present a user grouping scheme for reducing noise accumulation in a single cell and analyze the impact of transmitter connections on the user grouping scheme. SNR BIA in a multi-cell network is further proposed, which jointly optimizes the transmitter connection and the user grouping scheme. Extensive simulations demonstrate that the achievable sum rate of SNR BIA is 1.36 times, 1.66 times, and 2.68 times that of data shared BIA, standard BIA, and extended BIA reported in the literature, respectively, and SNR BIA is more robust to user mobility.
关键词: SNR reduced factor,effective degree of freedom,Blind interference alignment,transmitter connection
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Large Area 21.6% Efficiency Front Junction N-type Cell with Screen Printed Tunnel Oxide Passivated Poly-Si Rear Contact
摘要: Blind interference alignment (BIA) can greatly improve the degree of freedom with the infinite signal-to-noise ratio (SNR) assumption. Under the finite SNR condition, noise accumulation can have a significantly negative impact on SNR, inducing severe performance deterioration. In particular, in multi-cell networks, the transmitter to which a user connects can further affect its received SNR and the BIA design. To address such problem, we present a user grouping scheme for reducing noise accumulation in a single cell and analyze the impact of transmitter connections on the user grouping scheme. SNR BIA in a multi-cell network is further proposed, which jointly optimizes the transmitter connection and the user grouping scheme. Extensive simulations demonstrate that the achievable sum rate of SNR BIA is 1.36 times, 1.66 times, and 2.68 times that of data shared BIA, standard BIA, and extended BIA reported in the literature, respectively, and SNR BIA is more robust to user mobility.
关键词: transmitter connection,SNR reduced factor,effective degree of freedom,Blind interference alignment
更新于2025-09-19 17:13:59