修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • 68Ga CdTe/CdS fluorescent quantum dots for detection of tumors: investigation on the effect of nanoparticle size on stability and in vivo pharmacokinetics

    摘要: Background: Quantum dots (QDs)-based theranostics offer exciting new approaches to diagnose and therapy of cancer. To take advantage of the unique properties of these fluorescent QDs for different biomedical applications, their structures, size and/or surface chemistry need to be optimized, allowing their stability and functionalities to be tailored for different biomedical applications. Methodology: Cadmium telluride/Cadmium sulfide QDs (CdTe/CdS QDs) were synthesized and their structure, size, photostability and functionalities as a bioprobe for detection of Fibrosarcoma tumors were studied and compared with Cadmium telluride (CdTe) QDs. Hence, CdTe/CdS QDs were labeled with 68Ga radionuclide for fast in vivo biological nuclear imaging. Using gamma paper chromatography (γ-PC), the physicochemical properties of the prepared labeled QDs were assessed. In vivo biodistribution and positron emission tomography (PET) imaging of the 68Ga@ CdTe/CdS QDs nanocrystals were investigated in Sprague Dawley? rats bearing Fibrosarcoma tumor. Results: CdS shell on the surface of CdTe core increases the size and photostability against high energy radiations; therefore, CdTe/CdS QDs show prolonged fluorescence as compared to CdTe QDs. Conclusion: Excellent accumulation in tumor was observed for core/shell quantum dots, but this study showed that small changes in the size of the QDs (+1 nm), after adding the CdS shell around CdTe core, greatly change their biodistribution (especially the liver uptake).

    关键词: core/shell quantum dots,PET,tumor imaging,68Ga,Cadmium telluride/Cadmium sulfide

    更新于2025-09-23 15:19:57

  • A highly sensitive living probe derived from nanoparticle-remodeled neutrophils for precision tumor imaging diagnosis

    摘要: Timely and precise diagnosis of malignant tumors is of great value to patients’ treatment and prognosis. Although nanotechnology-based molecular imaging represents a major advancement in the field of tumor imaging diagnosis, it is restricted by the rapid blood clearance of nanoparticles and the diverse physiological barriers in vivo; hence, its further application is greatly hindered. Cell carriers, ascribed to their natural biological properties, are thus gaining increasing attention for addressing such issues. Here, taking full advantage of the inflammation-homing capability of neutrophils, we constructed a highly sensitive cell probe in which reduced bovine-serum albumin (BSA) nanoparticles, loaded with imaging agents (gadolinium (Gd) and BODIPY), were covalently fixed onto the cellular surface by 5-thio-2-nitrobenzoate (TNB)-mediated fast and efficient disulfide–thiol exchange. Impressively, the remodeling process exerted a negligible effect on the neutrophils’ biological profiles with regard to cell viability, morphology, and cell-surface protein markers. Compared with nanoparticle-based imaging agents in a lung-cancer xenograft model, the living neutrophil probe demonstrated faster targeting and stronger accumulation in the tumor site, as revealed by fluorescence and magnetic-resonance (MR) imaging. These results indicate the great potential of neutrophil-based living probe for precision tumor-diagnosis applications.

    关键词: Biomaterials,Neutrophils,Nanoparticles,Molecular imaging,Tumor imaging

    更新于2025-09-16 10:30:52

  • Quantum dots based near-infrared fluorescent probe for the detection of PepT1 expression in colorectal cancer

    摘要: The lysine-proline-valine tripeptide (KPV) can transport into colorectal cancer (CRC) cells via oligopeptide transporter 1 (PepT1) selectively. Here, we successfully designed a fluorescent probe for PepT1 receptor-targeted CRC imaging. This probe consisted of the CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) conjugated with KPV (QD-PAAO-KPV), exhibiting excellent near-infrared emission characteristics. The in vitro and in vivo results showed that the QD-PAAO-KPV was specifically and efficiently internalized in the PepT1-overexpressing colorectal Caco-2 tumor. In addition, it demonstrated that the probe possessed good biological activities. Thus, this study revealed that the probe QD-PAAO-KPV presented desirable targeting ability, showing promising prospects in CRC detection.

    关键词: Quantum dots,PepT1,Fluorescent probe,KPV Peptide,Tumor imaging

    更新于2025-09-12 10:27:22

  • Amphiphilic Fluorine-Containing Block Copolymers as Carriers for Hydrophobic PtTFPP for Dissolved Oxygen Sensing, Cell Respiration Monitoring and In Vivo Hypoxia Imaging with High Quantum Efficiency and Long Lifetime

    摘要: New amphiphilic star or multi-arm block copolymers with different structures were synthesized for enabling the use of hydrophobic oxygen probe of platinum (II)-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) for bioanalysis. The amphiphilic star polymers were prepared through the Atom Transfer Radical Polymerization (ATRP) method by using hydrophilic 4-arm polyethylene glycol (4-arm-PEG) as an initiator. Among the five block copolymers, P1 series (P1a, P1b, and P1c) and P3 possess fluorine-containing moieties to improve the oxygen sensitivity with its excellent capacity to dissolve and carry oxygen. A polymer P2 without fluorine units was also synthesized for comparison. The structure-property relationship was investigated. Under nitrogen atmosphere, high quantum efficiency of PtTFPP in fluorine-containing micelles could reach to 22% and long lifetime could reach to 76 μs. One kind of representative PtTFPP-containing micelles was used to detect the respiration of Escherichia coli (E. coli) JM109 and macrophage cell J774A.1 by a high throughput plate reader. In vivo hypoxic imaging of tumor-bearing mice was also achieved successfully. This study demonstrated that using well-designed fluoropolymers to load PtTFPP could achieve high oxygen sensing properties, and long lifetime, showing the great capability for further in vivo sensing and imaging.

    关键词: fluoropolymers,tumor imaging,cell respiration monitoring,dissolved oxygen sensors,micelles

    更新于2025-09-10 09:29:36

  • [IEEE 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med) - Split, Croatia (2018.9.10-2018.9.13)] 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med) - In Vivo Electrical Conductivity Imaging of Animal Tumor Model at 7T using Electrical Properties Tomography

    摘要: Ex vivo studies have shown that various diseases alter the electrical properties of tissues compared to healthy nearby tissues. Therefore, electrical conductivity can be used as a diagnostic parameter for e.g. tumor diagnosis. For in vivo measurements, magnetic resonance electrical properties tomography (MREPT) was used and electrical conductivity was reconstructed from the B1+ phase. The technique was first evaluated using homogeneous and heterogeneous phantoms. Then a mouse with a tumor was scanned and the conductivity is reconstructed from the B1+ phase map. The reconstructed conductivity in the phantom experiments was in good agreement with the target conductivity map and the conductivity map of the animal revealed good agreement with the co-axial probe measurement. Our work confirms the possibility of accurate in vivo conductivity assessment in disease.

    关键词: tumor imaging,conductivity,MRI,EPT,Electrical properties tomography

    更新于2025-09-10 09:29:36