修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

111 条数据
?? 中文(中国)
  • Plasmonic hole-transport-layer enabled self-powered hybrid perovskite photodetector using a modified perovskite deposition method in ambient air

    摘要: Herein, we report on an air-processed high performance self-powered hybrid perovskite (Pe) photodetector with plasmonic Silver nanoparticle (Ag NP) embedded hole-transport-layer (HTL), without the use of any electron-transporting layer (ETL). It is demonstrated that in the absence of ETL in the device, the Ag NPs embedded PEDOT:PSS HTL improves the photodetection performance significantly. We used a novel N2 gas assisted fast crystallization method for the deposition of perovskite film in ambient condition to form uniform Pe layer as compared to the nonuniform film obtained in conventional deposition method. The Pe film on Ag NPs embedded PEDOT:PSS layer shows enhanced optical absorption in the UV-visible region due to the plasmonic absorption by the Ag NPs. At zero bias, the ETL-free Ag NPs-Pe hybrid device shows ~45% enhanced responsivity and ~3 times faster photoresponse compared to the pristine device. The enhancements in the performance of hybrid photodetector are attributed to plasmon-enhanced optical absorption and hot electron generation, as well as improvement in charge extraction and transport by Ag NPs, which are corroborated by steady-state and time-resolved photoluminescence measurements. Impedance analysis of the devices shows the reduced carrier transfer resistance of the hybrid device, which results in superior transport of photo-generated charge carriers. Direct evidence for the increase in the work function by ~ 47 meV for Ag NPs doped PEDOT:PSS film is provided from the Kelvin probe force microscopy analysis. This increase in work function enables favorable band alignment with reduced energy barrier and a superior carrier transport resulting in improved photodetection performance for the hybrid device. Our results are significant for the development of high-performance, low-cost, ETL free plasmonic perovskite photodetectors for futuristic applications.

    关键词: Plasmonic perovskite photodetector,Kelvin probe force microscopy,Fast photoresponse,Self-biased photodetector

    更新于2025-11-21 11:01:37

  • UV-ozone induced surface passivation to enhance the performance of Cu2ZnSnS4 solar cells

    摘要: Interface property has been considered one of the most critical factors affecting the performance of semiconductor devices. In this work, we demonstrate an efficient surface passivation for the interface between Cu2ZnSnS4 (CZTS) and CdS buffer layer by using UV-ozone treatment at room temperature. The passivation led to a significant enhancement of short circuit current density (Jsc) of the device from 11.70 mA/cm2 to 18.34 mA/cm2 and thus efficiency of the CZTS solar cells from 3.18% to 5.55%. The study of surface chemistry has revealed that the UV-ozone exposure led to formation of a Sn–O rich surface on CZTS, which passivates the dangling bonds and forms an ultra-thin energy barrier layer at the interface of CZTS/CdS. The barrier is considered to be responsible for the reduction of non-radiative recombination loss in the solar cells as confirmed by photoluminescence (PL) measurement. The elongated lifetime of minority carriers in the CZTS solar cells by time-resolved PL has further verified the interface passivation effect induced by UV-ozone treatment. This work provides a fast, simple yet very effective approach for surface passivation of CZTS film to boost the performance of CZTS solar cells.

    关键词: CZTS solar cell,UV-Ozone treatment,Interface modification,Surface passivation

    更新于2025-11-21 11:01:37

  • Superior light harnessing and charge injection kinetics utilizing mirror-like nano cuboidal ceria coupled with reduced graphene oxide in zinc oxide nanoparticle based photovoltaics

    摘要: Efficiency in nanoparticle based photovoltaics is limited by optical transparency, light absorption as well as detrimental back transfer of electron at the hetero-interfaces. Three dimensional (3D) micro/nanostructures with excellent light scattering properties play pivotal role in light harvesting efficiency in DSSCs. Present study deals with the design and development of ternary hybrid photoanode utilizing high quality mirror like nano-cuboidal ceria (CeO2 NC) and 2D- reduced graphene oxide (RGO) sheets in conjunction with ZnO nanoparticle. A ~6% power conversion efficiency has been achieved for photoanode with optimized CeO2 NC loaded with 1 wt% RGO into ZnO NP. CeO2 NC owing to its size and high quality mirror like facets provides a better light harvesting by multiple interactions of incident photon with the absorber as revealed by UV–Vis diffused reflectance and IPCE analysis. 2D- RGO is proposed to act as an electron sink and provides faster electron transport pathway. Inclusion of 2D- RGO sheets yields a better charge injection kinetics (keinj ~ 2.3 × 108 s?1 for ternary, 1.1 × 108 s?1 for reference device) and collection at FTO as well as elevated recombination resistance (Rrec) and photo-induced electron life time (τe), unveiled by Electrochemical Impedance Spectroscopic (EIS) analysis corroborates a reduced reverse tunneling of photo-injected electron at ZnO/sensitizer/redox couple interface.

    关键词: Diffusion,Mirror-like,Light scattering material,Reduced graphene oxide,Electrochemical impedance spectroscopy,Nano cuboidal

    更新于2025-11-21 11:01:37

  • AIP Conference Proceedings [Author(s) CURRENT TRENDS IN RENEWABLE AND ALTERNATE ENERGY - Guwahati, India (4–6 December 2018)] - Study of laser induced micro-structural changes in reduced graphene oxide

    摘要: Graphene is a promising 2D material for solar cell and energy storage applications. Graphene based materials such as Graphene oxide (GO) are proposed as anode materials for Lithium ion batteries, transparent conducting films, electrodes in polymer based solar cells and many other applications. The present paper discusses laser induced micro structural changes in reduced GO (r-GO) thin films. GO was prepared by Modified Hummers Method, which is easy and low cost method for its large-scale production. The samples were thermally annealed at 400°C to obtain r-GO. To study the influence of laser exposure on micro structure of r-GO, the Raman spectra was recorded after exposure to different time 2, 4, 6 and 8 minutes. Two different laser intensities (95 and 159 KW/cm2) were used to do the same. A blue shift in peak positions and change in ratio of intensity were observed in D and G peaks of Raman spectra after exposure. A total Raman blue shift of about 5 cm-1 is noted in each case, which is due to increased compressive stress between the carbon-carbon bonds. The Raman data was used for calculations of residual stress, grain size and defect density, which changes in gradual pattern with increase in power density and time of exposure. From these observations, it can be concluded that r-GO thin film undergoes micro-structural changes at exposed portion, without affecting rest of the film.

    关键词: Graphene,Raman Spectroscopy,Reduced Graphene Oxide,Laser Induced Changes,Graphene Oxide

    更新于2025-11-21 11:01:37

  • Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion

    摘要: The design of new alloys by and for metal additive manufacturing (AM) is an emerging field of research. Currently, pre-alloyed powders are used in metal AM, which are expensive and inflexible in terms of varying chemical composition. The present study describes the adaption of rapid alloy development in laser powder bed fusion (LPBF) by using elemental powder blends. This enables an agile and resource-efficient approach to designing and screening new alloys through fast generation of alloys with varying chemical compositions. This method was evaluated on the new and chemically complex materials group of multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs). MPEAs constitute ideal candidates for the introduced methodology due to the large space for possible alloys. First, process parameters for LPBF with powder blends containing at least five different elemental powders were developed. Secondly, the influence of processing parameters and the resulting energy density input on the homogeneity of the manufactured parts were investigated. Microstructural characterization was carried out by optical microscopy, electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS), while mechanical properties were evaluated using tensile testing. Finally, the applicability of powder blends in LPBF was demonstrated through the manufacture of geometrically complex lattice structures with energy absorption functionality.

    关键词: multi-principal element alloys,high-entropy alloys,additive manufacturing,rapid alloy development,powder blends,laser powder bed fusion

    更新于2025-11-21 11:01:37

  • Surface Passivation of Perovskite Solar Cells Toward Improved Efficiency and Stability

    摘要: The advancement of perovskite solar cells (PVSCs) technology toward commercialized promotion needs high efficiency and optimum stability. By introducing a small molecular material such as tetratetracontane (TTC, CH3(CH2)42CH3) at the fullerene (C60)/perovskite interface of planar p-i-n PVSCs, we significantly reduced the interfacial traps, thereby suppressing electron recombination and facilitating electron extraction. Consequently, an improved efficiency of 20.05% was achieved with a high fill factor of 79.4%, which is one of the best performances for small molecular-modified PVSCs. Moreover, the hydrophobic TTC successfully protects the perovskite film from water damage. As a result, we realized a better long-term stability that maintains 87% of the initial efficiency after continuous exposure for 200 h in air.

    关键词: Surface defect,Charge transport,Surface passivation,Perovskite solar cells

    更新于2025-11-21 11:01:37

  • Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies

    摘要: A rapid, facile and label-free sensing strategy is developed for the detection of dopamine (DA) in the real samples by exploiting nitrogen-doped graphene quantum dots (N-GQDs) decorated on Au nanoparticles (Au@N-GQD). The as-grown Au@N-GQD exhibits strong blue fluorescence at room temperature and the fluorescence intensity is drastically quenched in presence of DA in neutral medium. The mechanistic insight into the DA sensing by Au@N-GQDs is explored here by careful monitoring of the evolution of the interaction of Au NPs and N-GQDs with DA under different conditions through electron microscopic and spectroscopic studies. The highly sensitive and selective detection of DA over a wide range is attributed to the unique core-shell structure formation with Au@N-GQD hybrids. The quenching mechanism involves the ground state complex formation as well as electron transfer from N-GQDs. The presence of Au NPs in Au@N-GQD hybrids accelerates the quenching process (~14 fold higher than bare N-GQDs) by the formation of stable dopamine-o-quinone (DQ) in this present detection scheme. The fluorescence quenching follows the linear Stern-Volmer plot in the range 0-100 μM, establishing its efficacy as a fluorescence-based DA sensor with a limit of detection (LOD) 590 nM, which is ~27 fold lower than the lowest abnormal concentration of DA in serum (16 μM). This sensing scheme is also successively applied to trace DA in Brahmaputra river water sample with LOD 480 nM including its satisfactory recovery (95-112%). Our studies reveal a novel sensing pathway for DA through the core-shell structure formation and it is highly promising for the design of efficient biological and environmental sensor.

    关键词: Dopamine,Fluorescence quenching,Nitrogen-doped graphene quantum dots,Colorimetric sensing,Core-shell structure,Gold nanoparticles

    更新于2025-11-21 11:01:37

  • Hydrogen Induced Etching Features of Wrinkled Graphene Domains

    摘要: Wrinkles are observed commonly in CVD (chemical vapor deposition)-grown graphene on Cu and hydrogen etching is of significant interest to understand the growth details, as well as a practical tool for fabricating functional graphene nanostructures. Here, we demonstrate a special hydrogen etching phenomenon of wrinkled graphene domains. We investigated the wrinkling of graphene domains under fast cooling conditions and the results indicated that wrinkles in the monolayer area formed more easily compared to the multilayer area (≥two layers), and the boundary of the multilayer area tended to be a high density wrinkle zone in those graphene domains, with a small portion of multilayer area in the center. Due to the site-selective adsorption of atomic hydrogen on wrinkled regions, the boundary of the multilayer area became a new initial point for the etching process, aside from the domain edge and random defect sites, as reported before, leading to the separation of the monolayer and multilayer area over time. A schematic model was drawn to illustrate how the etching of wrinkled graphene was generated and propagated. This work may provide valuable guidance for the design and growth of nanostructures based on wrinkled graphene.

    关键词: graphene,hydrogen etching,wrinkling,CVD synthesis

    更新于2025-11-21 11:01:37

  • Nano-mirror embedded back reflector layer (BRL) for advanced light management in thin silicon solar cells

    摘要: This work illustrates a technology for advanced light management by introducing a nonconventional back reflector layer (BRL) in amorphous silicon (a-Si:H) solar cells. To meet this, silver sulfide (Ag2S) nanoparticles with ~50 nm diameter have been chosen as the nano-mirror owing to its low parasitic absorption loss over a broad wavelength (300 to 1100 nm) region. The Ag2S NPs were sandwiched between two indium tin oxide (ITO) layer and placed as the back reflector layer of an a-Si:H solar cell to achieve better light trapping within the active layers. The embedded structure exhibited high reflectance (up to 93%) in the red and near-infrared region, the main working zone of a-Si:H cells. With the incorporation of such state of the art back reflector structure in a-Si:H solar cells, a photo-conversion efficiency of 10.58% has been achieved; which is one of the best in this class.

    关键词: a-Si:H solar cell,Back reflection,theoretical validation,high efficiency,nano-mirror

    更新于2025-11-21 11:01:37

  • Tailored focal beam shaping and its application in laser material processing

    摘要: Besides the optimization of the laser and processing parameters, the adaptation of the focal intensity distribution offers great potential for a well-defined control of laser processing and for improving the processing results. In this paper, different tailored intensity distributions were discussed with respect to their suitability for femtosecond laser material processing on the micro- and nanoscale such as cutting, marking, and the generation of laser-induced periodic surface structures. It was shown by means of laser processing of stainless steel that the numerical simulations for the beam shaping unit are in good agreement with the experimental results. Also, the suitability of the beam shaping device to work with a scanner and an F-theta lens as commonly used for material processing was demonstrated. In this context, the improvement of the machining results was shown experimentally, and a significant reduction of the machining time was achieved.

    关键词: laser-induced periodic surface structures,donut,femtosecond laser processing,top-hat,beam shaping

    更新于2025-11-21 11:01:37