在当今信息安全形势日益严峻的背景下,传统的加密技术正面临巨大挑战。你是否曾好奇,是否存在一种几乎无法被破解的通信方式?“**量子通信的主要工作原理是什么?**”这不仅是一个前沿的科学问题,更是电子电工行业未来发展的关键方向。它利用量子力学的基本原理,如量子叠加和量子纠缠,为信息传输构建了一道天然的安全屏障,其潜力远超基于计算复杂性的经典加密算法。对于从事光纤
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 颜色 / Colors : Blue
规格书
AI 智能分析
该产品已被2篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
全视场光学相干断层扫描中利用细胞运动性作为视网膜外植体成像的对比剂
外植体 运动性 光学相干断层扫描
目的:利用细胞运动性作为视网膜外植体的对比剂。 方法:采用高分辨率全场光学相干断层扫描(FFOCT)与动态FFOCT技术,并结合荧光成像,对猕猴和小鼠视网膜外植体进行成像。 结果:静态与动态FFOCT从细胞内不同结构产生互补性对比。离体样本成像时,静态FFOCT通过检测陡峭的折射率梯度来显示包括纤维、血管、胶原和细胞轮廓在内的静止结构;而动态FFOCT则突出主要位于细胞内的运动结构的代谢活动,从而在原本被噪声掩盖的细胞中创建或增强对比度。在神经节细胞层及内外核层中,静态FFOCT对比度相对于噪声背景过低,而动态FFOCT能检测到大多数视网膜细胞类型。 结论:静态与动态FFOCT的复合成像提供了一种新型FFOCT图像,为视网膜外植体成像提供了有价值的信息。该技术可提供具有亚细胞分辨率的活体视网膜无标记表面成像,动态FFOCT则增加了关于细胞活动的信息,这对纵向外植体研究具有重要意义。
查看全文 > -
结构光照明显微成像的放大率不变表面轮廓测量技术
可调透镜 表面轮廓测量 口内扫描仪 结构光照明 放大率不变性
本文提出了一种结构光照明(SI)表面轮廓测量方法,该方法具有快速成像且图像放大率与深度无关的特点。通过采用电调谐透镜(ETL),可在不移动物体的情况下实现物平面的快速扫描。利用4f中继系统和将ETL置于共轭平面的设计,将物镜焦距变化通常导致的放大率比变化降至最低。采用偏振光学元件规避了ETL未镀膜膜面产生的高反射问题。研究还提出通过改变传统SI成像系统的扫描顺序——先进行深度扫描再进行图案位移,从而充分发挥ETL的快速响应特性。实验表明扫描速度可提升至25倍。论文全面分析了基于ETL的SI轮廓测量原理及相关问题,并通过实验验证了该构想。实验中在保持放大率变化低于0.03的同时实现了35毫米的扫描深度变化,通过对锥形三维物体和人脸石膏像的SI成像展示了其三维轮廓测量能力。该SI成像方法可充分应用于口腔内扫描仪或生物医学成像等需要快速扫描的领域。
查看全文 >
-
光电信息科学与工程实验方案1
1. 实验设计与方法选择:本研究采用全场光学相干断层扫描(FFOCT)和动态FFOCT对视网膜外植体成像,利用细胞运动性作为固有对比度。方法包括比较静态与动态FFOCT图像,并结合荧光成像进行验证。 2. 样本选择与数据来源:使用猕猴和小鼠视网膜外植体,共成像11个猕猴和6个小鼠标本。样本通过解剖视网膜并置于特定培养基中制备。 3. 实验设备与材料清单:设备包括商用FFOCT系统(LLTech Management)、配备高数值孔径物镜的实验室FFOCT装置、基因枪系统(Helios, Bio-Rad)、相机(CMOS和sCMOS)、LED、滤光片及软件(LABVIEW、MATLAB、Fiji)。材料包括神经基础培养基、HEPES、金微载体、质粒及动物组织。 4. 实验流程与操作步骤:通过FFOCT和动态FFOCT成像视网膜外植体,采集图像序列以计算动态对比度的标准差。荧光成像用于细胞鉴定?;袢∩疃榷颜缓褪奔湫蛄幸约嗖庾橹媸奔涞谋浠? 5. 数据分析方法:使用Fiji处理图像,合并多模态图像,基于频段对动态信号进行颜色编码,并手动计数细胞。分析时间波动以评估细胞活性与存活状态。
获取完整方案 -
光电信息科学与工程实验方案2
1. 实验设计与方法选择:研究采用电调谐透镜(ETL)进行快速深度扫描,并使用4f中继系统以最小化放大率变化。通过偏振光学元件规避ETL表面的高反射。 2. 样本选择与数据来源:成像锥形3D物体和人脸造型石膏像以展示系统的三维轮廓能力。 3. 实验设备与材料清单:电调谐透镜(EL-10-30-C-VIS-LD-MV,Optotune)、中继透镜(AC254-100-A-ML,Thorlabs)、LED光源(M470L3,Thorlabs)、线性偏振片(LPVIS100-MP2,Thorlabs)、相机(MQ003CG-CM,XIMEA)。 4. 实验流程与操作步骤:将ETL置于4f中继系统的共轭平面。调整扫描顺序,优先执行深度扫描再进行图案位移以实现快速扫描。 5. 数据分析方法:通过在不同扫描距离下成像分辨率靶标来测量放大率变化。
获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
压力传感器的使用方法
2025-10-01 14:30:47
-
电压表如何进行读数?有哪些使用注意事项?
2025-09-22 17:00:57
-
截止滤光片和带通滤光片
2025-11-21 09:00:42
-
钽电容和陶瓷电容两者有什么区别?如何进行读数?
2025-09-20 19:21:02
科学论文
相关产品
-
冷白光高功率LED
发光二极管
亿光电子
芯片材料: InGaN 发光颜色: White 直流正向电流(手电筒模式): 350mA
ELCH08-NF5565J7J9283910-FDH是一款高效小型封装的白光LED,具有高光通量和光学效率,适用于多种照明和显示应用。
-
超高亮度白光高功率LED
发光二极管
亿光电子
芯片材料: InGaN 发光颜色: White 直流正向电流(手电筒模式): 350mA
ELCH09-NB5060J8K2283910-FDX是一款高效小型封装的白光LED,具有高光通量和光效,适用于多种照明和指示应用。
-
高功率照明LED
发光二极管
亿光电子
芯片材料: InGaN 发光颜色: Warm White 直流正向电流(手电筒模式): 350mA
ELAT07-NB2025J5J7293910-F3Y是一款高效小型封装的LED光电产品,具有高光通量和光学效率,适用于多种照明和显示应用。
-
深紫外线发光二极管
发光二极管
Sensor Electronic Technology Inc (SETi)
峰值波长: 280 光学输出功率: 0.5-2.8 正向电压: 6.0-7.5
TUD89F1D是一款深紫外线发光二极管,峰值发射波长为270nm至280nm。该LED密封在金属玻璃焊接封装中,采用先进的半导体材料、芯片设计和光学特性,专为医疗和分析仪器、光学传感、化学和生物分析以及园艺设计。
-
JOLD-45-CPXF-1L
发光二极管
BoJen Optics, Inc.
操作模式: cw 操作模式: power modulation only between threshold and maximum current 最大光输出功率: 45W
光纤耦合二极管激光器,连续波工作模式,集成TEC,采用被动冷却设计,适用于高功率和高可靠性应用。
相关文章
-
-
在当今飞速发展的科技时代,测量与测试的精确性和效率直接决定了研发和生产的质量。传统的固定功能仪器虽然稳定,但往往价格昂贵、升级困难且灵活性不足。那么,有没有一种技术能够打破这些壁垒,实现“一机多用”并适应各种复杂场景呢?答案就是虚拟仪器技术。虚拟仪器技术在各领域都有着怎样的用途?它如何通过软件定义硬件的核心思想,重塑我们从电子研发到工业制造的测试测量方式?理
-
在数字化浪潮席卷全球的今天,高速、稳定的信息传输已成为社会运转的命脉。作为信息高速公路的核心“收费站”,光通信??榈男阅苤苯泳龆耸萘鞯目炻肴萘?。在这个技术密集、竞争激烈的赛道中,谁能占据光通信模块行业龙头地位,谁就掌握了未来通信产业的制高点。这些领军企业不仅驱动着数据中心、5G乃至6G网络的演进,其技术突破更是深刻影响着从配电系统智能化到工业自动化等多
-
随着3D传感、高速通信等技术的飞速发展,VCSEL芯片(垂直腔面发射激光器)作为核心光源,其重要性日益凸显。与传统的边发射激光器相比,VCSEL芯片在效率、可靠性、光束质量及低成本大规模生产上展现出巨大优势。因此,选择技术实力雄厚、质量稳定的VCSEL芯片主要生产厂商,成为电子工程师、系统集成商和采购决策者面临的关键问题。这直接关系到终端产品,无论是用于数据
加载中....
称呼
电话
单位名称
用途