在现代光通信网络中,高效、灵活地管理日益增长的数据流量是核心挑战。作为波分复用(WDM)系统中的关键节点设备,光分插复用器(OADM)发挥着不可或缺的作用。它允许在中间站节点直接上下(Add/Drop)特定波长的光信号,而无需将所有信号进行光电转换,极大地提升了网络效率和灵活性。因此,深入剖析光分插复用器的优缺点,对于网络规划工程师、系统集成商乃至配电系统设
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 反射镜类型 / Mirror Type : Longpass Mirror, Dichroic Mirror
- 反射镜形状 / Mirror Shape : Round
- 基底/材料 / Substrate/Material : UV Fused Silica
- 反射镜厚度 / Mirror Thickness : 3.2 mm
- 反射镜直径 / Mirror Diameter : 25.4 mm (1 Inch)
- 表面质量 / Surface Quality : 40-20 scratch-dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被6篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
采用非周期性光子筛的超薄广角大面积数字三维全息显示器
3D可视化 光子筛 宽视角 波前调制 全息显示
全息显示器无需特殊眼镜即可为多位用户提供3D视觉体验。通过精确调控光场,全息显示器能呈现具有完整运动视差和连续深度线索的逼真3D场景。然而受波前调制实际限制,现有全息显示器尚无法生成此类场景——当前波前调制器有限的衍射角与像素数量导致生成的3D场景尺寸小且可视角度窄。我们提出一种平板波前调制器,可显示大尺寸动态全息图像并具备宽视角特性。具体而言,该方案将具有大角度衍射能力的超高容量非周期光子筛与商用液晶显示面板相结合来生成全息图像。除宽视角与大屏幕尺寸外,该波前调制器还支持多色投影且体积小巧,这意味着有望在轻薄设备上实现全息显示功能。
查看全文 > -
用于量子点编码微珠阵列生物检测的光谱-光学镊子辅助荧光复用系统
珠阵列 量子点编码 光镊 多重生物检测
作为一种高效的多重生物分子检测工具,微珠阵列可实现无需分离的多目标检测,适用于分析活体生物中抗原、抗体等珍贵稀缺样本。本研究提出一种光谱光学镊子辅助的荧光多重检测系统用于分析生物分子偶联微珠阵列。通过光学镊子将微珠捕获并锁定于焦点处接受激发,提供稳定优化的检测条件。移动系统焦点并扫描样品载玻片,实现多重检测后量子点编码微珠阵列的发射光收集。光谱仪采集记录荧光发射光谱,通过识别解码峰位置并计算发射光谱标记信号强度,完成对目标物的定性与定量检测。概念验证研究表明,该系统可对单一样本中的多种抗-IgG进行多重检测,检测限达1.52 pM(线性范围0.31-10 nM)。进一步优化实验条件后,采用夹心法实现对人血清中目标IgG的特异性检测,检测限低至0.23 pM(线性范围0.88-28 pM),证实了该方法在实际样本中的实用价值。
查看全文 > -
利用荧光成像技术对径迹膜胶体溶液中单个纳米颗粒的超滤过程进行研究
纳米孔 单光子源 硒化镉 薄膜 纳米显微技术 纠缠光子源 量子点 胶体溶液 显微镜技术 纳米颗粒 超滤 油酸 核滤膜 发光 聚合物
我们采用荧光纳米显微技术直接观测了直径约10纳米的单个胶体量子点(球形核壳结构CdSeS/ZnS半导体纳米晶,表面修饰有机油酸配体)在核孔滤膜(具有约500纳米孔径的聚丙烯径迹蚀刻膜)纳米孔中的吸附过程。研究表明当胶体甲苯溶液通过膜孔时,这些纳米颗?;嵬耆土粼?0微米深度处。
查看全文 >
-
光电信息科学与工程实验方案
1. 实验设计与方法选择:该系统采用透射式LCD面板结合非周期性光子筛来调制波前。光子筛由随机取向的微孔构成,这些微孔能产生大角度衍射光,从而增大全息图像的可视角度。LCD像素与微孔的一一对应关系实现了光场的独立调控。 2. 样本选择与数据来源:光子筛通过常规光刻和电子束写入工艺制备。使用不同波长的激光照射生成并采集全息图像(如螺旋体、四面体、旋转立方体等)。 3. 实验设备与材料清单:LCD面板(LCX017AL,索尼)、激光器(绿光532nm/红光639nm/蓝光473nm)、熔融石英基底镀钛薄膜的光子筛、CCD相机(Lt365R,Lumenera)、物镜(UPlan FLN 40×/UPLSAPO 4×,奥林巴斯)、管镜(焦距100mm)、二向色镜(DMLP505/DMLP550,Thorlabs)、用于成像的可移动载物台。 4. 实验流程与操作步骤:将LCD面板与光子筛对齐贴合,激光束照射面板后显示最佳相位图案以在目标位置形成焦点。通过搭载于可移动载物台的4f望远镜成像系统采集图像,观察运动视差与不同视角效果。采用泽尼克多项式进行像差校正。 5. 数据分析方法:基于光程差代数计算聚焦相位值。对比度因子以全息图像强度与背景噪声的比值测定。通过半高宽测量和空间频率图谱分析可视角度及焦点尺寸。
获取完整方案 -
精密仪器实验方案
1. 实验设计与方法选择:本研究采用自制光谱光学镊子系统捕获并激发量子点编码微珠以实现荧光多重检测。光学镊子提供非接触式捕获和稳定的激发条件。 2. 样本选择与数据来源:聚苯乙烯微珠(直径10μm和5μm)编码有CdSe/ZnS量子点(525、565、585、625nm),并偶联特定生物探针(如抗IgG抗体)。样本包括含不同浓度目标生物分子的PBS溶液及人血清。 3. 实验设备与材料清单:设备包含405nm单模激光器、Olympus 100×油镜(NA=1.30)、二向色镜(Thorlabs DMLP500)、分束器、透镜组(L1-L5)、照明LED、矩阵CCD(ZWO ASI178MC)、自制光谱仪、三维平移台。材料包括聚苯乙烯微珠、量子点、IgG抗体、抗IgG抗体、PEI、PSS、戊二醛、人血清,以及来自Nano-Micro研究中心、武汉嘉源量子点技术开发公司、Bioss生物技术公司、Solarbio生命科学、阿拉丁工业公司等供应商的各类化学试剂。 4. 实验流程与操作步骤:通过自修复法制备量子点编码微珠并进行表面生物探针修饰,用于免疫检测(一步免疫吸附或夹心法)。光学系统在激光焦点处捕获微珠,用405nm激光激发量子点,通过光谱仪和CCD收集荧光发射信号,并扫描样品载玻片分析多个微珠。 5. 数据分析方法:分析荧光光谱以识别解码峰(定性检测)和标记峰(定量检测),测量强度并拟合标准曲线进行浓度响应分析,基于空白信号和标准差计算检测限。
获取完整方案 -
应用物理学实验方案
1. 实验设计与方法选择:采用荧光纳米显微技术直接观测单个胶体量子点在纳米孔中的吸附过程。 2. 样本选择与数据来源:使用胶体量子点(CdSeS/ZnS,直径约6纳米)和直径约500纳米的聚丙烯径迹蚀刻膜。 3. 实验设备与材料清单:Melles Griot 40×0.6数值孔径显微镜物镜、配备EG100位移控制器的压电运动平台、单频连续波Coherent Verdi V6激光器、二向色镜/分束器(Thorlabs DMLP605)、干涉滤光片(Thorlabs FELH 600,Semrock SR628/32)、超灵敏制冷电子倍增CCD相机(Andor iXon Ultra EMCCD)。 4. 实验步骤与操作流程:将量子点胶体溶液通过聚丙烯膜,并在不同焦平面深度进行成像记录。 5. 数据分析方法:基于自主图像识别算法的专业软件处理数据,包括噪声背景预处理、局部强度极大值搜索以及采用Levenberg-Marquardt算法拟合定位图像。
获取完整方案
获取完整实验方案
我们还有3 个针对不同应用场景的完整实验方案,包括详细设备清单、连接示意图和数据处理方法。
联系获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
光学内窥镜的原理
2025-11-28 22:20:42
-
步进电机驱动板使用及接线介绍
2025-09-03 05:20:37
-
谐振电路原理视频
2025-11-04 11:00:54
-
红外光谱仪主要检测什么
2025-11-25 15:20:49
科学论文
相关产品
-
PS 975 M-M01安装式25.4mm后向反射器
光学反射镜
索雷博
有效孔径: ?17.8mm 直径公差: +0/-0.1mm 表面质量: 40-20 Scratch-Dig
PS975M-M01是一款安装在直径为25.4mm的反射器,具有高精度光学性能和耐用的结构设计。
相关文章
-
-
紫外线辐射危害健康与材料,因臭氧层损耗等风险加剧。传统防护技术存资源、污染问题,需更可持续替代方案。
-
在当今快速发展的电子电工领域,LED芯片作为核心的半导体器件,其市场动向直接关系到从照明到显示、从汽车电子到智能家居等一系列产业的兴衰。然而,市场充满了不确定性,仅凭经验或直觉做出决策的风险极高。因此,通过科学的数据分析来洞察LED芯片的市场发展趋势,对于制造商、分销商、方案设计师乃至使用这些芯片构建配电系统的工程师而言,都变得至关重要。本文将深入探讨如何借
-
在众多电工工具与照明设备中,气体放电灯触发器是一个虽不显眼却至关重要的核心部件。无论是大型体育场的氙气灯、工业厂房的金属卤化物灯,还是部分高压钠灯,其启动和稳定工作都离不开一个性能卓越的触发器。它如同心脏的起搏器,负责产生一个瞬间的高压脉冲,击穿灯管内的气体,从而引发气体放电发光。然而,在实际的配电系统应用中,触发器选型不当、安装错误或老化失效等问题屡见不鲜
加载中....
称呼
电话
单位名称
用途