在当今信息安全形势日益严峻的背景下,传统的加密技术正面临巨大挑战。你是否曾好奇,是否存在一种几乎无法被破解的通信方式?“**量子通信的主要工作原理是什么?**”这不仅是一个前沿的科学问题,更是电子电工行业未来发展的关键方向。它利用量子力学的基本原理,如量子叠加和量子纠缠,为信息传输构建了一道天然的安全屏障,其潜力远超基于计算复杂性的经典加密算法。对于从事光纤
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 反射镜类型 / Mirror Type : Shortpass Mirror, Dichroic Mirror
- 反射镜形状 / Mirror Shape : Rectangular
- 基底/材料 / Substrate/Material : UV Fused Silica
- 反射镜厚度 / Mirror Thickness : 1.0 mm (0.04 Inch)
- 表面质量 / Surface Quality : 40-20 scratch-dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被2篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
利用螺旋相位滤波器实现红外上转换图像边缘增强
红外上转换图像 螺旋相位滤波器 边缘增强
我们通过准相位匹配求和频率转换过程及螺旋相位滤波器,从理论和实验两方面展示了红外上转换图像边缘增强技术。用1559.5纳米高斯光束照射透射掩模产生红外图像,并以1064纳米涡旋光束泵浦,最终生成632.5纳米的上转换边缘增强图像。我们推导了该过程的物理模型,该模型很好地解释了实验结果的偏差。所提出的技术可进一步适配其他光谱区域和非线性光学过程。
查看全文 > -
探测原子级二硫化铼层的上带隙
密度泛函理论 二硫化铼 时间分辨光谱学 超快载流子动力学 二次谐波产生
我们采用时间分辨二次谐波显微镜和密度泛函理论计算,研究了剥离态ReS?薄膜的超快载流子动力学与电子态。通过1.19电子伏特光束探测不同厚度层的二次谐波信号:当厚度不超过约13纳米时呈现渐增趋势,随后因体材料干涉光吸收而下降。施加调谐至激子带隙(1.57电子伏特)的泵浦脉冲后,二次谐波信号随探测延迟时间呈现衰减-上升特征曲线。功率与厚度依赖性表明电子-空穴复合过程受缺陷和表面调控。虽然1.57至1.72电子伏特泵浦能在激发态诱导2.38电子伏特的双光子吸收,但该跃迁与禁阻的d-d亚壳层轨道内跃迁高度关联而受限。通过组合使用倍频泵浦光(2.38电子伏特)与波长可调的二次谐波探测光(2.60-2.82电子伏特),我们清晰观测到二次谐波曲线从衰减-上升向上升-衰减的转变,这揭示了最高占据分子轨道上方约5.05电子伏特处存在额外的电子吸收态(s轨道)。修正后的密度泛函理论计算通过考量各电子跃迁允许度及微小上带隙(~0.5电子伏特)验证了该发现。
查看全文 >
-
光电信息科学与工程实验方案1
1. 实验设计与方法选择:实验采用1559.5纳米高斯光束照射透射掩模产生红外图像,并以1064纳米涡旋光束泵浦,在632.5纳米波长生成上转换边缘增强图像。推导了该过程的理论模型。 2. 样本选择与数据来源:输入对象为红外高斯光束照射的字母"U"滤光片,泵浦激光器为主动调Q二极管泵浦Nd:YAG微激光器。 3. 实验设备与材料清单:包括光学隔离器、半波片、螺旋相位板(SPP)、窄线宽单频DFB连续光纤激光器、透镜、二向色镜、掺氧化镁周期性极化铌酸锂(MgO:PPLN)晶体、温控炉、可见光透射光栅及CCD相机。 4. 实验流程与操作步骤:搭建4f成像系统,通过二向色镜聚焦并合束涡旋光束与物光束。非线性晶体置于透镜焦点处,傅里叶平面位于晶体中部,上转换图像由CCD相机采集。 5. 数据分析方法:通过信号图像的傅里叶变换,逐像素乘以相应滤波函数后进行二次傅里叶变换,实现边缘增强的理论模拟。
获取完整方案 -
光电信息科学与工程实验方案2
1. 实验设计与方法选择:本研究采用TSHG显微镜和DFT计算来探究ReS2薄膜的电子态与载流子动力学。 2. 样品选择与数据来源:使用不同厚度的剥离ReS2薄膜,其特性通过光学对比度、光致发光光谱、拉曼光谱和原子力显微镜确认。 3. 实验设备与材料清单:双模掺铒光纤激光系统、共聚焦显微镜、油浸物镜,以及SiO2包覆硅基底上的机械剥离ReS2晶体。 4. 实验流程与操作步骤:用1.19电子伏特光束探测ReS2层的二次谐波,通过添加调谐至激子带隙的泵浦脉冲生成TSHG谱图。 5. 数据分析方法:采用DFT计算分析数据以理解电子跃迁与载流子动力学。
获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
压力传感器的使用方法
2025-10-01 14:30:47
-
电压表如何进行读数?有哪些使用注意事项?
2025-09-22 17:00:57
-
截止滤光片和带通滤光片
2025-11-21 09:00:42
-
钽电容和陶瓷电容两者有什么区别?如何进行读数?
2025-09-20 19:21:02
科学论文
相关产品
-
PS 975 M-M01安装式25.4mm后向反射器
光学反射镜
索雷博
有效孔径: ?17.8mm 直径公差: +0/-0.1mm 表面质量: 40-20 Scratch-Dig
PS975M-M01是一款安装在直径为25.4mm的反射器,具有高精度光学性能和耐用的结构设计。
相关文章
-
-
在当今飞速发展的科技时代,测量与测试的精确性和效率直接决定了研发和生产的质量。传统的固定功能仪器虽然稳定,但往往价格昂贵、升级困难且灵活性不足。那么,有没有一种技术能够打破这些壁垒,实现“一机多用”并适应各种复杂场景呢?答案就是虚拟仪器技术。虚拟仪器技术在各领域都有着怎样的用途?它如何通过软件定义硬件的核心思想,重塑我们从电子研发到工业制造的测试测量方式?理
-
在数字化浪潮席卷全球的今天,高速、稳定的信息传输已成为社会运转的命脉。作为信息高速公路的核心“收费站”,光通信??榈男阅苤苯泳龆耸萘鞯目炻肴萘?。在这个技术密集、竞争激烈的赛道中,谁能占据光通信??樾幸盗返匚?,谁就掌握了未来通信产业的制高点。这些领军企业不仅驱动着数据中心、5G乃至6G网络的演进,其技术突破更是深刻影响着从配电系统智能化到工业自动化等多
-
随着3D传感、高速通信等技术的飞速发展,VCSEL芯片(垂直腔面发射激光器)作为核心光源,其重要性日益凸显。与传统的边发射激光器相比,VCSEL芯片在效率、可靠性、光束质量及低成本大规模生产上展现出巨大优势。因此,选择技术实力雄厚、质量稳定的VCSEL芯片主要生产厂商,成为电子工程师、系统集成商和采购决策者面临的关键问题。这直接关系到终端产品,无论是用于数据
加载中....
称呼
电话
单位名称
用途