修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

New Techniques for Sizing Solar Photovoltaic Panels for Environment Monitoring Sensor Nodes

DOI:10.1155/2019/9835138 期刊:Journal of Sensors 出版年份:2019 更新时间:2025-09-11 14:15:04
摘要: The development of perpetually powered sensor networks for environment monitoring to avoid periodic battery replacement and to ensure the network never goes offline due to power is one of the primary goals in sensor network design. In many environment-monitoring applications, the sensor network is internet-connected, making the energy budget high because data must be transmitted regularly to a server through an uplink device. Determining the optimal solar panel size that will deliver sufficient energy to the sensor network in a given period is therefore of primary importance. The traditional technique of sizing solar photovoltaic (PV) panels is based on balancing the solar panel power rating and expected hours of radiation in a given area with the load wattage and hours of use. However, factors like the azimuth and tilt angles of alignment, operating temperature, dust accumulation, intermittent sunshine and seasonal effects influencing the duration of maximum radiation in a day all reduce the expected power output and cause this technique to greatly underestimate the required solar panel size. The majority of these factors are outside the scope of human control and must be therefore be budgeted for using an error factor. Determining of the magnitude of the error factor to use is crucial to prevent not only undersizing the panel, but also to prevent oversizing which will increase the cost of operationalizing the sensor network. But modeling error factors when there are many parameters to consider is not trivial. Equally importantly, the concept of microclimate may cause any two nodes of similar specifications to have very different power performance when located in the same climatological zone. There is then a need to change the solar panel sizing philosophy for these systems. This paper proposed the use of actual observed solar radiation and battery state of charge data in a realistic WSN-based automatic weather station in an outdoor uncontrolled environment. We then develop two mathematical models that can be used to determine the required minimum solar PV wattage that will ensure that the battery stays above a given threshold given the weather patterns of the area. The predicted and observed battery state of charge values have correlations of 0.844 and 0.935 and exhibit Root Mean Square Errors of 9.2% and 1.7% for the discrete calculus model and the transfer function estimation (TFE) model respectively. The results show that the models perform very well in state of charge prediction and subsequent determination of ideal solar panel rating for sensor networks used in environment monitoring applications.
作者: Maximus Byamukama,Roseline Akol,Julianne Sansa-Otim,Geofrey Bakkabulindi
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating new techniques for sizing solar photovoltaic panels for environment monitoring sensor nodes to ensure perpetual power supply and avoid network downtime due to power issues.

The study demonstrated that autonomous gateways and sensor nodes in environment monitoring wireless sensor networks can be effectively modelled as linear systems using solar insolation profile and battery state of charge. The discrete calculus and transfer function estimation techniques provided strong prediction accuracy and low error magnitudes, making them suitable for determining the optimal solar panel size for sensor networks.

The study was conducted in an outdoor uncontrolled environment, which introduced some nonlinearities and time-variance affecting the accuracy of results. Solar radiation data was measured every 15 minutes, while battery state of charge was measured every 3 minutes, leading to potential underestimation or overestimation of some values. Variations in cellular signal strength and sensor node reports not reaching the gateway also introduced errors.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能模块化扫描电子显微镜,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“New Techniques for Sizing Solar Photovoltaic Panels for Environment Monitoring Sensor Nodes”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期