修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

?? 中文(中国)

Laser-Based Phase Contrast for Transmission Electron Microscopy

DOI:10.1017/S1431927619005646 期刊:Microscopy and Microanalysis 出版年份:2019 更新时间:2025-09-19 17:13:59
摘要: Laser control of free electrons has been used to advance the exploration of matter on the atomic scale. For example, temporal modulation of electron waves with light has enabled the study of transient processes with attosecond resolution. By contrast, laser-based spatial shaping of the electron wave function has not yet been realized, even though it could be harnessed to probe radiation-sensitive systems, such as biological macromolecules, at the standard quantum limit and beyond. We demonstrate increased image contrast by laser control of the spatial phase profile of the electron wave function in transmission electron microscopy (TEM). We first realize an electron interferometer, using continuous-wave laser-induced retardation to coherently split the electron beam, and capture TEM images of the light wave. We then demonstrate Zernike phase contrast by using the laser beam to shift the phase of the electron wave scattered by a specimen relative to the unscattered wave. Electrons interact with light via the repulsive ponderomotive potential arising from stimulated Compton scattering. Due to the short electron-light interaction time in a micron-scale laser focus, retardation of the relativistic electrons used in TEM requires an intensity of tens of GW/cm2. Such intensities have so far only been attained with pulsed lasers, but a cw laser is needed in order to work state-of-the-art, continuously operating TEM. The requisite laser intensity is generated by 4000-fold resonant power enhancement in a near-concentric Fabry-Perot optical cavity with a mode waist of w0 = 13 μm. A laser system consisting of a fiber amplifier seeded by a low-power master laser supplies an input laser beam at a wavelength of λ = 1064 nm. The experiments are carried out with 80 keV electrons, in a custom-modified TEM (FEI Titan) equipped with additional electron optics that magnify the diffraction pattern to an effective focal length of f = 20 mm. The cavity is suspended in the TEM column, with its axis orthogonal to the electron beam propagation direction and with the mode waist positioned close to the center of the magnified electron diffraction plane, as shown in Fig. 1. Zernike phase contrast is evident in a typical close-to-focus image (Fig. 1), showing the structure of the carbon film. A high-intensity CW laser field generates Zernike phase contrast in a TEM and significantly increases the image contrast at low spatial frequencies. Such a phase plate will enable dose-efficient data collection in single-particle analysis of biological macromolecules, electron tomography of vitrified cells, and imaging of sensitive materials science specimens. The controllable phase shift in this device can also be used for holographic reconstruction of the post-specimen wave function. Work in the immediate future will include working with 300-keV electrons, which requires constructing a new cavity with lower-loss optical coatings to reach higher laser intensity. We will also study and optimize the imaging properties of the phase-contrast TEM, and apply it to structural biology.
作者: O. Schwartz,J. J. Axelrod,S. L. Campbell,C. Turnbaugh,A. Herman,E. Planz,R. M. Glaeser,H. Müller
AI智能分析
纠错
研究概述 实验方案 设备清单

To demonstrate increased image contrast by laser control of the spatial phase profile of the electron wave function in transmission electron microscopy (TEM).

The study successfully demonstrates that a high-intensity CW laser field can generate Zernike phase contrast in a TEM, significantly increasing image contrast at low spatial frequencies. This advancement enables dose-efficient data collection in various applications, including single-particle analysis of biological macromolecules and electron tomography of vitrified cells. Future work will focus on optimizing the system for higher energy electrons and further applications in structural biology.

The current setup requires constructing a new cavity with lower-loss optical coatings to work with 300-keV electrons, indicating a limitation in the current system's capability to handle higher energy electrons without modifications.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Laser-Based Phase Contrast for Transmission Electron Microscopy”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期