- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-photothermal Combination Therapy Towards Breast Cancer
摘要: Gold nanorods (GNRs) and doxorubicin (DOX) were loaded into the lumen of halloysite nanotubes (HNTs) via a rapid synthesis process (2 min) and physical adsorption. The targeting molecules of folic acid (FA) are then conjugated to HNTs via reactions with bovine serum albumin (BSA). The formation of GNRs in HNTs was verified by different techniques. The Au-HNTs-DOX@BSA-FA shows maximum of 26.8 oC temperature rising after 8 min 808-nm laser irradiation under 0.8 W cm-2. The functionalized HNTs exhibited stronger chemotherapeutic effect under laser irradiation, since the laser could promote the release of DOX and temperature rising. Au-HNTs-DOX@BSA-FA treated MCF-7 cells exhibited survival rate of 7.4% after laser irradiation. Au-HNTs-DOX@BSA-FA treatment do not induce an obvious toxicity in blood biochemistry, liver and kidney function in normal mice. In vivo chemo-photothermal treatment towards 4T1-bearing mice suggested Au-HNTs-DOX@BSA-FA exhibited remarkable tumor-targeted efficiency and good controlled-release effect for DOX. Also, the nanoparticles exhibited a rapid photothermal performance and inhibiting ability of the growth of tumor. Due to the synergistic effect of chemical-photothermal therapy, the toxicity of DOX to normal tissues was reduced on the premise of ensuring the same curative effect with a low dosage of 0.32 mg kg-1. This novel chemo-photothermal therapy nanoplatform provided a safe, rapid, effective, and cheap choice for treatment of breast tumor both in vitro and in vivo.
关键词: doxorubicin,photothermal therapy,halloysite nanotubes,chemo-photothermal therapy,gold nanorods
更新于2025-09-23 15:23:52
-
Hierarchical assembly of gold nanorods stripe patterns for sensing and cells alignment
摘要: Hierarchical assemblies of nano-material superstructure with controlled orientation affords a multitude of novel properties of plasmonics and broadly applications. Yet constructing multi-functional superstructures with positioning nanoparticles in desired locations remain challenges. Herein, gold nanorods (GNRs) assembled in stripe patterns with controlled orientation and structures in millimetre scale for versatile application are achieved. Applications of patterned GNRs in sensing enhancement and engineering mammalian cells alignment are investigated experimentally. The performance of patterned GNRs in surface enhanced Raman scattering (SERS) and electrical sensing are found in orientational dependence. The SERS signals of vertically arranged GNRs arrays exhibit double folder intensity than horizontally arranged. In contrast, the horizontally arranged GNRs exhibit twice high electrical conductivity. The system is further explored to pattern mammalian cells, for the first time, we reveal nanostructured topography of GNRs confine cells to specific region, direct the adhesion and extension of living cells, which open up a broad application in tissue engineering and biosensing.
关键词: Gold nanorods,Cell patterns,Surface enhanced Raman scattering,Controllable orientation
更新于2025-09-23 15:23:52
-
On-chip sensor solution for hydrogen gas detection with the anodic niobium-oxide nanorod arrays
摘要: Two types of anodic niobium-oxide nanofilms were synthesized via anodization of an Al/Nb bilayer sputter-deposited onto a SiO2-coated Si wafer. Type I nanofilm was composed of a 200 nm thick NbO2 layer holding the upright-standing 650 nm long, 50 nm wide, and 70 nm spaced Nb2O5 nanorods, of 7·109 cm?2 density, whereas the Type II nanofilm had similarly long but bigger Nb2O5 nanorods, 100 nm wide, 220 nm spaced, and of 8·108 cm?2 density, aligned directly on a niobium metal without any buffering oxide layer, which was achieved for the first time. Each film was then incorporated in an advanced 3-D architecture and multilayer layout on a silicon chip comprising 33 microsensors, with variable sizes and tuned electrical characteristics, by combining the high-temperature vacuum or air annealing, sputter-deposition, and lift-off photolithography to form Pt/NiCr top electrodes and a multifunctional SiO2 interlayer, chemical etching, laser dicing, and ultrasonic wire-bonding. The proposed on-chip sensor solution allowed for a sensitive, fast, and highly selective (toward NH3 and CH4) detection of hydrogen gas. Comprehensive gas sensing tests performed for Type II nanofilm ultimately confirmed the presence of a Schottky-type sensing mechanism, the contribution, however, being substantially weaker than that due to reactions over the surface of the oxide nanorods, especially when the rods show a transition from fully to partially depleted states when interacting with H2 gas. The film formation and chip fabrication technologies may be transferable to other PAA-assisted 1-dimensional metal-oxide nanomaterials suitable for on-chip gas sensing.
关键词: niobium oxide nanorods,anodic alumina,hydrogen,Schottky barrier,anodizing,on-chip sensor
更新于2025-09-23 15:23:52
-
Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP
摘要: Two fluorescent aptasensor methods were developed for the detection of ATP in biochemical systems. The first method consisted of a label-free fluorescent Bturn-on^ approach using a guanine-rich ATP aptamer sequence and the DNA-binding agent berberine complex. In the presence of ATP, the ATP preferentially binds with its aptamer and conformationally changes into a G-quadruplex structure. The association of berberine with the G-quadruplex results in the enhancement of the fluorescence signal of the former. The detection limit of ATP was found to be 3.5 μM. Fluorescence, circular dichroism and melting temperature (Tm) experiments were carried out to confirm the binding specificity and structural changes. The second method employs the ratiometric fluorescent approach based on the Forster resonance energy transfer (FRET) for the detection of ATP using berberine along with a quencher (AuNRs, AgNPs) and a fluorophore (red quantum dots (RQDs), carbon dots (CDs)) labeled at 5′ and 3′ termini of the ATP-binding aptamer sequence. Upon addition of ATP and berberine, ATP specifically binds with its aptamer leading to the formation of G-quadruplex, and similarly, berberine also binds to the G-quadruplex. This leads to an enhancement of fluorescence of berberine while that of RQD and CDs were significantly quenched via FRET. The respective detection limits calculated were 3.6 μM and 3.8 μM, indicating these fluorescent aptasensor methods may be used for a wide variety of small molecules.
关键词: Aptasensor,Adenosine-5′-triphosphate,Gold nanorods,Fluorescence,FRET,Berberine
更新于2025-09-23 15:22:29
-
Sub-ppm acetone gas sensing properties of free-standing ZnO nanorods
摘要: In this paper, ZnO nanorods were synthesized by low cost and simple wet chemical method and used as a highly sensitive acetone gas sensor with detection limit as low as 25 ppb which makes the sensor a promising choice for various applications. The fabricated sensor showed a response value of 1.75 towards 25 ppb acetone at optimum working temperature of 320 °C with a response time of 30s. However, the sensor showed response value of 60 towards 50 ppm acetone with a response time of 15 s. The grown ZnO nanorods were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) for morphology and crystallinity characterization. According to the SEM images, freestanding nanorods with mean diameter of 80 nm and mean length greater than 1.5um were obtained with highly preferential c-axis orientation.
关键词: Sub-ppm sensing,Gas sensor,Acetone,ZnO Nanorods,Hydrothermal
更新于2025-09-23 15:22:29
-
Au nanoparticles supported on nanorod-like TiO2 as catalysts in the CO-PROX reaction under dark and light irradiation: Effect of acidic and alkaline synthesis conditions
摘要: Gold nanoparticles precipitated-deposited on titania nanostructures (1.0 wt% nominal loading) were studied in the preferential CO oxidation in excess of H2 at room temperature and atmospheric pressure, both in dark and under simulated solar light irradiation. Titania supports were synthesized by means of two hydrothermal methods markedly acid and basic, giving rise to rutile nanorods and anatase deformed nanorods structures, respectively. Characterization techniques such as N2 physisorption, XRD, XPS, DRUV-vis, HRTEM and XRF were performed in order to study the chemical, structural and optical properties of the catalysts. Well defined rutile nanorods structures were obtained from the acidic treatment allowing a regular distribution of gold nanoparticles and resulting quite active in the CO-PROX reaction. In particular the sample from the acidic synthetic approach calcined at 700 °C displayed the best results as it was highly selective to CO2 under both dark and simulated solar light irradiation.
关键词: Photocatalysis,CO preferential oxidation,Gold nanoparticles,Titania nanorods,Simulated solar light
更新于2025-09-23 15:22:29
-
Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells
摘要: Nanoparticle-mediated photothermal therapy has been widely studied for cancer treatment. It is important to disclose how photothermally ablated tumor cells trigger immune responses. In this study, bovine serum albumin (BSA)-coated gold nanorods (BSA-coated AuNRs) were prepared and used for photothermal ablation of breast tumor cells. The BSA-coated AuNRs showed high photothermal conversion efficiency and good photothermal ablation effect towards tumor cells. The ablated tumor cells were co-cultured with immature dendritic cells (DCs) through a direct cell contacting model and diffusion model to confirm the stimulatory effects of cell–cell interaction and soluble factors released from ablated tumor cells. The results indicated that photothermally ablated tumor cells induced immune-stimulatory responses of DCs through both cell–cell interaction and soluble factors. The results should be useful for synergistic photothermal-immunotherapy of primary and metastatic cancer.
关键词: gold nanorods,cellular uptake,photothermal ablation,cancer therapy,photothermal therapy,immune responses
更新于2025-09-23 15:22:29
-
Multisegmented Metallic Nanorods: Sub-10 nm Growth, Nanoscale Manipulation, and Subwavelength Imaging
摘要: Multisegmented metallic nanorods (MS-M-NRs) have attracted increasing attention thanks to their integrated structures and complex functions. The integration of nanoscale segments in 1D enables maximum exposure of each segment and enhanced interaction between adjacent segments. Such structural integration will induce functional complexity in the nanorods, leading to superior properties for the individual components. Herein, recent progress on the development of MS-M-NRs is reviewed. Their precise fabrication, nanoscale manipulation, and subwavelength imaging, as well as simultaneous manipulation and imaging are discussed, respectively. Specifically, precise fabrication of MS-M-NRs focuses on porous anodic alumina (PAA) templated electrodeposition, which enables sub-10 nm growth of the segments and their interfaces/fronts. Nanoscale manipulation of MS-M-NRs introduces the fundamental methods that are employed for delicate movement control on the nanorods through internal or external stimulations. Subwavelength imaging of MS-M-NRs highlights the achievements on identification and location of constituent nanoscale segments/gaps based on their differences and interactions. Simultaneous manipulation and imaging of MS-M-NRs addresses the significance and potential applications of the nanorods with magnetic–plasmonic dual modulation. The development of MS-M-NRs will greatly contribute to materials science and nanoscience/nanotechnology.
关键词: metallic nanorods,porous anodic alumina (PAA),electrodeposition,imaging,manipulation
更新于2025-09-23 15:22:29
-
Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy
摘要: Photothermal therapy (PTT) using chitosan/fucoidan multilayer coating of gold nanorods (CS/F-GNRs) has emerged as an alternative strategy for cancer therapy. In this study, biocompatible CS/F-GNRs were synthesized as a new generation of photothermal therapeutic agents for in vivo cancer treatments owing to their good biocompatibility, photostability, and strong absorption in the near-infrared (NIR) region. The CS/F-GNRs showed a good size distribution (51.87 ± 3.03 nm), and the temperature variation of the CS/F-GNRs increased by 54.4 °C after laser irradiation (1.0 W/cm2) for 5 min. The in vitro photothermal efficiency of CS/F-GNRs indicated that significantly more cancer cells were killed under laser irradiation at 1.0 W/cm2 for 5 min. On the 20th day of treatment, the MDA-MB-231 tumor cells in mice treated with CS/F-GNRs under laser irradiation had almost completely disappeared. Therefore, the biocompatible CS/F-GNRs have shown great promise as safe and highly efficient near-infrared photothermal agents for future cancer therapy.
关键词: Multilayer,Chitosan,Gold nanorods,Fucoidan,Photothermal therapy
更新于2025-09-23 15:22:29
-
Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy
摘要: It is well known that stealth coating effectively extends the circulation lifetime of nanomaterials in blood, which favors systemic delivery but also limits their cellular internalization and in turn prevents efficient tumor-targeting and accumulation. In this study, we address this dilemma by developing an enzyme-responsive zwitterionic stealth peptide coating capable of responding to matrix metalloproteinase-9 (MMP-9) which is overexpressed in tumor microenvironment. The peptide consists of a cell-penetrating Tat sequence, an MMP-9 cleavable sequence, and a zwitterionic antifouling sequence. Using this coating to protect photothermal gold nanorods (AuNRs), we found that responsive AuNRs showed both satisfactory systemic circulation lifetime and significantly enhanced cellular uptake in tumors, resulting in clearly improved photothermal therapeutic efficacy in mouse models.
关键词: Tat peptide,photothermal therapy,gold nanorods,zwitterionic peptide,MMP-9 responsive
更新于2025-09-23 15:22:29