修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

21 条数据
?? 中文(中国)
  • Potential challenges and approaches to develop the large area efficient monolithic perovskite solar cells (mPSCs)

    摘要: The next generation technologies based on perovskite solar cells (PSCs) are targeted to develop a true low cost, low tech, widely deployable, easily manufactured and reliable photovoltaics. After the extremely fast evolution in the last few years on the laboratory-scale, PSCs power conversion efficiency (PCE) reached over 24%. However, the widespread use of PSCs requires addressing the stability and industrial scale production issues. Carbon based monolithic perovskite solar cells (mPSCs) are one of the most promising candidates for the commercialization of the PSCs. mPSCs possess a unique architectural design and pave an easy way to produce large area and cost-effective fabrication of the PSCs. In this article, recent progress in the field of mPSCs, challenges and strategies for their improvement are briefly reviewed. Also, we focus on the predominant implementations of recent techniques in the fabrication of the mPSCs to improve their performance. This review is intended to serve as a future direction guide for the scientists who are looking forward to developing more reliable, cost-effective and large area PSCs.

    关键词: large area,perovskite solar cells,industrial scale production,stability,monolithic perovskite solar cells,carbon based

    更新于2025-09-16 10:30:52

  • Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification || Application of Liquid Laser Ablation: Organic Nanoparticle Formation and Hydrogen Gas Generation

    摘要: Laser ablation is induced by a heating process of materials through the absorption of laser light and results in an explosive expansion of materials. For materials located in liquid, in contrast to those in vacuum, laser ablation proceeds under rather mild conditions via a cycle of heating and cooling by mediated solvent; therefore, it is applicable for organic solids to fragment into nanoparticles. Alternatively, for effective light absorbers, the irradiated site becomes the reaction centre of a photochemical reaction even in liquids, resulting in hydrogen gas generation. In this chapter, two topics of laser ablation in the liquid phase are presented: nanoparticle formation of organic materials and hydrogen gas generation from solid carbon in water. Thereby, the extended abilities of liquid laser ablation to transform ordinary materials into functional ones are introduced.

    关键词: spectroscopy,carbon-based nanoparticles,hydrogen generation,colloidal solution,nanosecond laser pulses,organic nanoparticles

    更新于2025-09-12 10:27:22

  • Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling <i>via</i> modular architecture design

    摘要: Carbon-based perovskite solar cells (C-PSCs) are emerging as low-cost stable photovoltaics. However, their power conversion efficiency (PCE) still lags behind that of devices based on Au or Ag as the current collector. Here, we introduced an innovative modular PSC design using a carbon back electrode, whose sheet resistance and thickness were greatly reduced by covering it with another carbon-coated FTO glass that was applied under pressure. We showed that these two individual elements could be assembled and separated repeatedly. Moreover, among the various commercial carbon sources (carbon black, graphite sheet, and graphene), graphene exhibited the best overall performance, showing the crucial importance of graphene as a charge collector. Power conversion efficiency (PCE) of 18.65% was achieved for graphene-based PSCs (G-PSCs), which was among the highest efficiency reported so far for C-PSCs. Moreover, the optimized devices without encapsulation retained 90% of their initial PCE after aging at an elevated temperature of 85 1C for 1000 h. Remarkably, G-PSCs showed significant structural flexibility; there was negligible degradation in PCE after repeated disassembling and assembling for more than 500 cycles. Our system provides a promising prospect for the facile repair and maintenance of PSCs via modular interconnections; related strategies may be extended to other devices.

    关键词: modular architecture,stability,carbon-based,perovskite solar cells,flexibility,graphene

    更新于2025-09-12 10:27:22

  • Improved Performance of Carbon Electrode Perovskite Solar Cells using Urea Treatment in Two Step Processing

    摘要: Perovskite solar cell has made a steadily research progress with superior photovoltaic power conversion efficiency (PCE) over 25%. The quality of perovskite film is a key factor affecting device efficiency. Lewis bases such as urea, DMSO and thiourea etc. have been applied in perovskite precursor solutions for one-step processing to effectively control film morphology. Herein, we report urea treatment in a two-step processing for obtaining high quality methylammonium lead triiodide perovskite (CH3NH3PbI3) film. This is accomplished by immersing the PbI2 film into the mixture solution of urea/methylammonium iodide (MAI). The optimized urea concentration in the MAI solution is 0.4 mg/mL, attributing to larger-sized and better crystalline perovskite grains than that without urea additive. The main function of the urea additive is the formation of the adduct MAI·PbI2·O=C(NH2)2, retarding the crystallization process of the perovskite film. The steady-state and time-resolved photoluminescence measurements revealed that perovskite CH3NH3PbI3 grown using the optimized concentration of urea prolonged carrier lifetime and reduced carrier recombination. Finally, the carbon-based perovskite solar cells fabricated from the optimal urea concentration of 0.4 mg/mL achieved the enhanced photovoltaic performance with the highest PCE of 13.10% and an average value of 11.34%, in comparison to devices without urea treatment exhibiting an average PCE of only 8.67%.

    关键词: Lewis base additive,grain size,carbon-based perovskite solar cell,urea

    更新于2025-09-12 10:27:22

  • The synthesis of carbon-based nanomaterials by pulsed laser ablation in water

    摘要: Pulsed Laser Ablation in liquid (PLAL) is considered as a robust and simple technique for producing nanoparticles (NPs) using lasers. The carbon-based nanoparticles were fabricated via the PLAL approach by irradiating a graphite target with a pulsed Nd:YAG laser of wavelength 532 nm. The graphite target was immersed in distilled water and irradiated for 10 min. The pulse length, reputation rate, and ?uence were 6 ns, 10 Hz, and 0.4 J cm?2, respectively. The structural and physical properties of the synthesized NPs were investigated and analyzed using different characterization methods. For example, Transmission Electron Microscopy (TEM) images revealed diverse carbon nanostructures such as graphene nanosheets, nanospheres, nanospheres in the shape of a necklace, and nanotubes. The spectrum of Energy Dispersive X-Ray spectroscopy (EDX) con?rmed successful synthesis of high purity carbon nanostructures. Moreover, the result of X-Ray Diffraction (XRD) Spectroscopy indicated the presence of reduced Graphene Oxide (rGO) with a (002) plane and the absence of Graphene Oxide (GO). The transmission spectrum from Ultraviolet-Visible (UV–vis) analysis showed a strong trough at 266 nm which is attributed to the presence of carbon nanostructures. Furthermore, Fourier-Transform Infrared Spectroscopy (FTIR) analysis demonstrated the vibration bonds related to carbon. The nanostructures produced were semi-stable with little agglomeration as was inferred from the results of the Zeta Potential. Finally, the Dynamic Light Scattering (DLS) analysis supported the TEM results. PLAL technique is proved to be a simple method for producing carbon-based nanomaterials. Moreover, the laser ?uence was found to be an important factor which affects greatly the type of nanostructures that could be synthesized during laser ablation.

    关键词: reduced graphene oxide,graphene,carbon-based nanomaterials,pulsed laser ablation

    更新于2025-09-12 10:27:22

  • Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells

    摘要: CsPbIBr2 perovskite exhibits the most balanced bandgap and durability features among all the inorganic perovskites, showing great potential in the photoelectric field. Nevertheless, the poor film quality of the traditionally spin-coated CsPbIBr2 restricts the further improvement of the device performance. Here, we develop a novel lithium (Li) doping strategy to promote the optical, morphological and electronic properties of the solution-processed CsPbIBr2 perovskites. Upon incorporating Li+ ions into CsPbIBr2 lattice, highly crystallized and well-oriented CsPbIBr2 crystals are obtained. The as-prepared Li-doped CsPbIBr2 exhibits a higher film coverage over the substrate with larger grains and less grain boundaries compared to the none-doped counterparts. The trap-state densities in the CsPbIBr2 film are also effectively alleviated while the carrier lifetimes are elongated by Li doping, contributing to a lower energy loss and a higher charge collection efficiency. The optimized Li-doped perovskite solar cells (PSCs) demonstrate an excellent champion power conversion efficiency (PCE) of 9.25%, much higher than that of the none-doped devices (7.41%). Furthermore, the unencapsulated devices present a superior air and thermal stability under the protection of the hydrophobic CuPc layer and carbon electrode. Our work provides a new opportunity to fabricate cost-effective and highly efficient CsPbIBr2 PSCs in a facile way.

    关键词: carbon-based,perovskite solar cell,Li doping,CsPbIBr2,highly efficient

    更新于2025-09-11 14:15:04

  • Industrial Applications of Nanomaterials || Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications

    摘要: Laser is one of the most important technologies invented in the 20th century. Nowadays, the applications of laser have stretched over a vast spectrum including information technology, optoelectronics, quantum computing, materials characterization, materials processing, advanced three-dimensional (3D) printing, biology, biomedical, etc. In the nanotechnology domain, laser can be used for synthesis, processing, and characterization. In this chapter, we will focus on applying laser for synthesis and processing of nanomaterials as well as nanofabrication.

    关键词: nanofabrication,nanomaterials,laser ablation,laser pyrolysis,Laser,carbon-based nanomaterials,industrial applications

    更新于2025-09-11 14:15:04

  • Growing high-quality CsPbBr <sub/>3</sub> by using porous CsPb <sub/>2</sub> Br <sub/>5</sub> as an intermediate: a promising light absorber in carbon-based perovskite solar cells

    摘要: CsPbBr3 with a large band gap ((cid:1)2.3 eV) is a promising material for fabricating perovskite solar cells (PSCs) with a high open-circuit voltage (Voc) and high stability. However, a suitable method is still lacking for depositing high-quality CsPbBr3 films. Herein, we develop a novel strategy to deposit high-quality CsPbBr3 films by employing a porous CsPb2Br5 film as an intermediate layer. Highly porous CsPb2Br5 films composed of lamellar crystals were obtained by immersing Pb–Br precursor layers in a low-concentration CsBr IPA solution. The low CsBr concentration helped to widen the processing window of CsPb2Br5, while the low-polarity IPA solvent served to keep the film structure stable during the reaction. High-quality CsPbBr3 films with full coverage, high purity and low defect density were obtained by further converting the CsPb2Br5 films in a high-concentration CsBr solution. After introducing the optimized CsPbBr3 film into a carbon-based PSC without a hole transporting material (C-PSC), a power conversion efficiency (PCE) of 6.1% and a Voc of 1.38 V were achieved. Moreover, the devices without encapsulation show almost no PCE decay after 200 days of storage in ambient air (25–85% relative humidity, 20–30 (cid:3)C) and at 80 (cid:3)C (10–20% relative humidity) for over 1080 h.

    关键词: CsPbBr3,perovskite solar cells,stability,porous CsPb2Br5,carbon-based

    更新于2025-09-11 14:15:04

  • Nanoscale Materials in Water Purification || Photocatalysis of Graphene and Carbon Nitride-Based Functional Carbon Quantum Dots

    摘要: Day by day, global energy demands increase due to the rapid consumption of depleting fossil fuels and environmental pollution. This has led to the search for materials capable of both energy conversion and elimination of environmental pollutants through the aid of renewable solar energy. This is a promising approach for meeting future energy requirements and eliminating environmental pollutants. In this pursuit, semiconductor photocatalysts have immense potential for solving both energy and environmental issues. To date, numerous semiconductor materials have been explored, including those of metal oxides, chalcogenides, borates, titanates, tungstates, vanadates, zirconates, oxyhalides, and metal-based interstitial compounds. However, the majority of these suffer from limitations such as complex synthesis procedures, limited light absorption range due to their wide band gap, high cost, and toxicity-related issues. Over the past decade, carbon-based nanomaterials have gained attention in the field of photocatalysis. Many recent articles have placed emphasis upon metal-free carbon-based photocatalytic systems for degradation of organic pollutants and hydrogen production from water splitting. The prime merit of these nanomaterials is that they originate from naturally abundant constituent elements such as carbon, nitrogen, and oxygen, making them more economical than their metal-based counterparts. Most reported carbon-based photocatalysts have tunable band gap energies, enhancing their optical absorption range. Band gap energy can be tuned by varying synthesis conditions and precursors, resulting in the formation of nanomaterials with different morphologies. The preparation procedures for most carbon-based nanomaterials are less complex than those of metal-based materials.

    关键词: water splitting,energy conversion,semiconductor photocatalysts,graphene,carbon nitride,quantum dots,carbon-based nanomaterials,hydrogen production,solar energy,environmental pollutants,photocatalysis

    更新于2025-09-09 09:28:46

  • Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering

    摘要: All-inorganic CsPbBr3 perovskite solar cells (PSCs) have attracted tremendous attentions in the photovoltaic field these days in view of their outstanding stability, especially thermal stability. However, the bromide-rich perovskite, such as CsPbBr3, always suffer from a low phase-purity and poor morphology synthesized by traditional two-step deposition route. Herein, we demonstrate a facile multistep spin-coating strategy to fabricate high-quality CsPbBr3 films on the low-temperature processed compact TiO2 (c-TiO2) electron transport layer (ETL) of the carbon-based PSCs. As-prepared films exhibit more homogeneous with higher CsPbBr3-phase purity and larger average grain sizes up to 1 μm, compared to those prepared through traditional two-step deposition process. The champion power conversion efficiency (PCE) of the planar CsPbBr3 PSC is boosted from 7.05% to 8.12%, getting an increase by 15.2%, due to the increased crystallinity and light-harvesting ability as well as reduced trap states of the CsPbBr3 film. To further enhance the device performance, a SnO2 thin layer with much higher carrier mobility than TiO2 is introduced to passivate the c-TiO2 ETL. It is found that the SnO2 layer can not only improve the surface morphology of the ETL, but also reduce the current shunting pathways in the c-TiO2. The TiO2/SnO2 bilayered ETL possesses a superior electron extraction capability, beneficial to the charge transport and suppression of the interfacial trap-assisted recombination. The best-performing TiO2/SnO2-based CsPbBr3 PSC delivers an excellent fill factor of 0.817 and a high PCE of 8.79%, which is the highest efficiency for planar CsPbBr3 PSCs reported to date. More importantly, the unencapsulated all-inorganic PSCs show a promising humidity and thermal stability with no decline in efficiency when stored in ambient air at room temperature (25 oC) for over 1000 h and 60 oC for one month, respectively. Our work pave the ways for practical applications of cost-effective, highly efficient and stable all-inorganic PSCs.

    关键词: carbon-based,TiO2/SnO2,low cost,CsPbBr3,multistep spin-coating,high efficiency and stability

    更新于2025-09-09 09:28:46