- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
High-order harmonic generation of pulses with multiple timescales: selection rules, carrier envelope phase and cutoff energy
摘要: High harmonic generation (HHG) is sensitive to the carrier envelope phase (CEP) of its driving laser field if it is a sufficiently short pulse (several-cycle pulse). Here we show that strong CEP effects can also be found in HHG from long duration multi-cycle pulses (up to 200 fs at 800 nm central wavelength). We find that HHG from multi-cycle pulses may be CEP dependent when the driving pulse exhibits two distinct timescales (multi-timescale pulse): (i) a short timescale associated with the average frequency, and (ii) a long timescale associated with the pulse’s temporal periodicity. The interplay of these timescales results in significant changes to both the cutoff frequency, and the appearance of symmetry allowed harmonics in the spectrum as function of CEP, similar to HHG from several-cycle pulses. We relate this effect to the multi-timescale intensity variations in the driving pulse, and construct an analytical condition to access the phenomenon. Lastly, we numerically demonstrate reconstruction of the CEP through HHG from long duration multi-timescale pulses. Our work may be useful in several areas of strong-field physics and attosecond science, for example, allowing spectroscopy of multi-timescale processes (e.g. HHG from vibrationally active media), and paving the way towards CEP characterisation using long pulses.
关键词: carrier-envelope phase,dynamical symmetry,High harmonic generation
更新于2025-09-23 15:23:52
-
Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics
摘要: Time-resolved spectroscopic investigations of light-induced chemical reactions with universal detection capitalize recently on single-photon molecular probing using laser pulses in the extreme ultraviolet or X-ray regimes. Direct and simultaneous mappings of the time-evolving populations of ground-state reactants, Franck?Condon (FC) and transition state regions, excited-state intermediates and conical intersections (CI), and photoproducts in photochemical reactions utilize probe pulses that are broadband and energy-tunable. The limits on temporal resolution are set by the transit- or dwell-time of the photoexcited molecules at specific locations on the potential energy surface, typically ranging from a few femtoseconds to several hundred picoseconds. Femtosecond high-harmonic generation (HHG) meets the stringent demands for a universal spectroscopic probe of large regions of the intramolecular phase-space in unimolecular photochemical reactions. Extreme-ultraviolet and soft X-ray pulses generated in this manner with few-femtosecond or sub-femtosecond durations have enormous bandwidths, allowing the probing of many elements simultaneously through excitation or ionization of core?electrons, creating molecular movies that shed light on entire photochemical pathways. At free electron lasers (FELs), powerful investigations are also possible, recognizing their higher flux and tunability but more limited bandwidths. Femtosecond time-resolved X-ray transient absorption spectroscopy, in particular, is a valuable universal probe of reaction pathways that maps changes via the fingerprint core-to-valence resonances. The particular power of this method over valence-ionization probes lies in its unmatched element and chemical-site specificities. The elements carbon, nitrogen, and oxygen constitute the fundamental building blocks of life; photochemical reactions involving these elements are ubiquitous, diverse, and manifold. However, table-top HHG sources in the “water-window” region (280?550 eV), which encompasses the 1s-absorption edges of carbon (284 eV), nitrogen (410 eV), and oxygen (543 eV), are far from abundant or trivial. Recent breakthroughs in the laboratory have embraced this region by using long driving-wavelength optical parametric amplifiers coupled with differentially pumped high-pressure gas source cells. This has opened avenues to study a host of photochemical reactions in organic molecules using femtosecond time-resolved transient absorption at the carbon K-edge. In this Account, we summarize recent efforts to deploy a table-top carbon K-edge source to obtain crucial chemical insights into ultrafast, ultraviolet-induced chemical reactions involving ring-opening, nonadiabatic excited-state relaxation, bond dissociation and radical formation. The X-ray probe provides a direct spectroscopic viewport into the electronic characters and configurations of the valence electronic states through spectroscopic core-level transitions into the frontier molecular orbitals of the photoexcited molecules, laying fertile ground for the real-time mapping of the evolving valence electronic structure. The profound detail and mechanistic insights emerging from the pioneering experiments at the carbon K-edge are outlined here. Comparisons of the experimental methodology with other techniques employed to study similar reactions are drawn, where applicable and relevant. We show that femtosecond time-resolved X-ray transient absorption spectroscopy blazes a new trail in the study of nonadiabatic molecular dynamics. Despite table-top implementations being largely in their infancy, future chemical applications of the technique will set the stage for widely applicable, universal probes of photoinduced molecular dynamics with unprecedented temporal resolution.
关键词: time-resolved spectroscopy,photochemical reactions,high-harmonic generation,X-ray transient absorption spectroscopy,nonadiabatic molecular dynamics
更新于2025-09-23 15:21:21
-
Beam optimization in a 25 TW femtosecond laser system for high harmonic generation
摘要: It has been demonstrated in the past that high fluxes of extreme ultraviolet (XUV) light could be obtained by driving high harmonic generation (HHG) with high energy lasers. However, the peak intensity at the focal point of a femtosecond laser with more than 100 mJ can be too high for phase-matched HHG in gases. We propose a method to optimize the spatial profile at focus by adding customized wavefront terms. An XUV pulse energy of 5.6 μJ was obtained from HHG when a larger off-focus spot of a 500 mJ Ti: Sapphire laser beam was applied in an argon gas cell.
关键词: wavefront correction,extreme ultraviolet,femtosecond laser,high harmonic generation,Ti: Sapphire laser
更新于2025-09-23 15:21:01
-
Structure gauges and laser gauges for the semiconductor Bloch equations in high-order harmonic generation in solids
摘要: The semiconductor Bloch equations (SBEs) are routinely used for simulations of strong-field laser-matter interactions in condensed matter. In systems without inversion or time-reversal symmetries, the Berry connections and transition dipole phases (TDPs) must be included in the SBEs, which in turn requires the construction of a smooth and periodic structure gauge for the Bloch states. Here, we illustrate a general approach for such a structure-gauge construction for topologically trivial systems. Furthermore, we investigate the SBEs in the length and velocity gauges and discuss their respective advantages and shortcomings for the high-harmonic generation (HHG) process. We find that in cases where we require dephasing or separation of the currents into interband and intraband contributions, the length-gauge SBEs are computationally more efficient. In calculations without dephasing and where only the total current is needed, the velocity-gauge SBEs are structure-gauge independent and are computationally more efficient. We employ two systems as numerical examples to highlight our findings: a one-dimensional model of ZnO and the two-dimensional monolayer hexagonal boron nitride (hBN). The omittance of Berry connections or TDPs in the SBEs for hBN results in nonphysical HHG spectra. The structure- and laser-gauge considerations in the current work are not restricted to the HHG process and are applicable to all strong-field matter simulations with SBEs.
关键词: laser gauge,Berry connections,transition dipole phases,high-harmonic generation,semiconductor Bloch equations,structure gauge
更新于2025-09-23 15:21:01
-
High resolution time- and angle-resolved photoemission spectroscopy with 11 eV laser pulses
摘要: Performing time- and angle-resolved photoemission (tr-ARPES) spectroscopy at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still require large pulse energies (from hundreds of μJ to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of 5 × 1010 photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 μJ. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe3. This novel setup offers the opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.
关键词: energy resolution,time- and angle-resolved photoemission spectroscopy,HHG,tr-ARPES,charge density wave,high repetition rates,high harmonic generation,ErTe3,11 eV laser pulses
更新于2025-09-23 15:19:57
-
Electron excitation dynamics in a molecule modeled by valence-bond coupled localized electron wave packets; ????-?????μ?????±???¨é???-??3¢????????????????-????é???-???±èμ·?????¤????????ˉ??1;
摘要: A simple model of localized electron wave packets, floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is demonstrated to produce an accurate high-harmonic generation (HHG) spectrum from an LiH molecule induced by an intense laser pulse. In contrast with the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed in the valence σ bonding orbital, the present calculation indicates that a superposition of independent responses of the electrons reproduces the spectrum in which the contribution of the H 1s electron dominates the characteristic plateau and cut-off of HHG.
关键词: High-harmonic generation,Electron dynamics,Valence-bond theory,Localized wave-packets
更新于2025-09-23 15:19:57
-
Reconstruction of attosecond pulses in the presence of interfering dressing fields using a 100 kHz laser system at ELI-ALPS
摘要: Attosecond Pulse Trains (APT) generated by high-harmonic generation (HHG) of high-intensity near-infrared (IR) laser pulses have proven valuable for studying the electronic dynamics of atomic and molecular species. However, the high intensities required for high-photon-energy, high-flux HHG usually limit the class of adequate laser systems to repetition rates below 10 kHz. Here, APT’s generated from the 100 kHz, 160 W, 40 fs laser system (HR-1) currently under commissioning at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) are reconstructed using the Reconstruction of Attosecond Beating By Interference of two-photon Transitions (RABBIT) technique. These experiments constitute the first attosecond time-resolved photoelectron spectroscopy measurements with attosecond pulses performed at 100 kHz repetition rate and one of the first experiments performed at ELI-ALPS in the framework of projects commissioning its newly installed technologies. These RABBIT measurements were taken with an additional IR field temporally locked to the extreme-ultraviolet APT, resulting in an atypical ω beating. We show that the phase of the 2ω beating recorded under these conditions is strictly identical to that observed in standard RABBIT measurements within second-order perturbation theory. This work highlights an experimental simplification for future experiments based on attosecond interferometry (or RABBIT), which is particularly useful when lasers with high average powers are used.
关键词: photoelectron spectroscopy,High-harmonic generation,attosecond,RABBIT
更新于2025-09-23 15:19:57
-
Nonlinear optics with resonant metasurfaces
摘要: The field of nonlinear optics is a well-established discipline that relies on macroscopic media and employs propagation distances longer than a wavelength of light. Recent progress with electromagnetic metamaterials has allowed for the expansion of this field into new directions of new phenomena and novel functionalities. In particular, nonlinear effects in thin, artificially structured materials such as metasurfaces do not rely on phase-matching conditions and symmetry-related selection rules of natural materials; they may be substantially enhanced by strong local and collective resonances of fields inside the metasurface nanostructures. Consequently, nonlinear processes may extend beyond simple harmonic generation and spectral broadening due to electronic nonlinearities. This article provides a brief review of basic concepts and recent results in the field of nonlinear optical metasurfaces.
关键词: frequency conversion,high-harmonic generation,resonances,metasurfaces,nonlinear optics
更新于2025-09-23 15:19:57
-
High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4?MHz pulse repetition rate
摘要: Laser-dressed photoelectron spectroscopy, employing extreme-ultraviolet attosecond pulses obtained by femtosecond-laser-driven high-order harmonic generation, grants access to atomic-scale electron dynamics. Limited by space charge effects determining the admissible number of photoelectrons ejected during each laser pulse, multidimensional (i.e. spatially or angle-resolved) attosecond photoelectron spectroscopy of solids and nanostructures requires high-photon-energy, broadband high harmonic sources operating at high repetition rates. Here, we present a high-conversion-efficiency, 18.4-MHz-repetition-rate cavity-enhanced high harmonic source emitting 5 × 10^5 photons per pulse in the 25-to-60-eV range, releasing 1 × 10^10 photoelectrons per second from a 10-μm-diameter spot on tungsten, at space charge distortions of only a few tens of meV. Broadband, time-of-flight photoelectron detection with nearly 100% temporal duty cycle evidences a count rate improvement between two and three orders of magnitude over state-of-the-art attosecond photoelectron spectroscopy experiments under identical space charge conditions. The measurement time reduction and the photon energy scalability render this technology viable for next-generation, high-repetition-rate, multidimensional attosecond metrology.
关键词: attosecond science,photoelectron spectroscopy,high-harmonic generation,cavity enhancement,ultrafast lasers
更新于2025-09-19 17:15:36
-
A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control
摘要: A key element of optical spectroscopy is the link between observable selection rules and the underlying symmetries of an investigated physical system. Typically, selection rules arise from the interaction of its constituents. In light-matter interaction, emergent phenomena are particularly prominent in strongly driven states of matter, as evident in light-induced variants of superconductivity, the Hall effect, and topological insulators in the condensed phase, as well as exceptional points in molecules, Kramers–Henneberger states in gases, and time-crystals in isolated many-body systems. Such emergent states are often governed by novel symmetry properties and topologies, which may be probed by external or emitted radiation fields. Here, we report on the experimental observation of an emergent class of symmetries in the electromagnetic field emitted by a strongly driven atomic system. Specifically, we analyze the sets of allowed and forbidden harmonic orders in high-harmonic generation from tailored bi-circular and bi-elliptical fields. Corroborated by theoretical modeling, the identified selection rules correspond to a complete triad of dynamical symmetries. We believe that the general principles underlying our observations will be equally relevant for other systems, including crystalline solids.
关键词: bi-elliptical fields,optical spectroscopy,high-harmonic generation,dynamical symmetries,selection rules,bi-circular fields,symmetries
更新于2025-09-19 17:13:59