- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon
摘要: Due to the existence of an acid etch resistant thin amorphous silicon layer over the smooth grooves of the diamond wire sawing polycrystalline silicon wafer surface, the anti-re?ection e?ect is usually not ideal using the mature acidic texturization. The amorphous silicon layer will be produced on the machined surface by material ductile removal. Therefore, during the process of cutting photovoltaic polycrystalline silicon wafers, the material removed in the brittle way is expected and the surface topography of the wafers formed with the brittle fracture is better for the texture fabricating. In this paper, a mathematical model considering the in?uences of process parameters and wire saw parameters was developed based on indentation fracture mechanics. The variations of cutting groove pro?le formed by di?erent material removal modes were also included. The e?ect of abrasives distributed on the wire saw on material removal and surface formation of polysilicon was analyzed. The results showed that most of abrasives removed material with ductile removal mode, however, the volume of the material removed by abrasive in ductile mode is less than 10% of the total removal volume. Brittle fracture removal mode was still the major way of material removal in diamond wire sawing. With the same ratio of the feed rate and wire speed, the faster feed rate and wire speed will not only improve the cutting e?ciency, but also is easier to obtain a brittle fracture surface. There is a critical angle θc for the distribution of abrasives on the wire saw surface. Only when the position angle of the abrasive removing material in brittle mode is less than θc, the brittle fracture can be formed on the wafers surface.
关键词: Diamond wire sawing,Depth of cut,Material removal mode,Photovoltaic polycrystalline silicon
更新于2025-09-23 15:23:52
-
Novel polyelectrolyte–Al2O3/SiO2 composite nanoabrasives for improved chemical mechanical polishing (CMP) of sapphire
摘要: A new type of polyelectrolyte–Al2O3/SiO2 composite nanoparticle with excellent dispersibility and superior polishing performance was successfully fabricated using a facile method. Silica acted as a bifunctional molecule by attaching to alumina via covalent bond and adsorbing polyelectrolytes by electrostatic interaction. The material removal rate of the polyelectrolyte–Al2O3/SiO2 abrasive was 30% higher than that of the pure Al2O3 abrasive. In addition, the sapphire surface was much smoother. The material removal mechanism was investigated during CMP using the microcontact and wear model. The enhanced removal rate was mainly attributed to the well-dispersed particles, which can accelerate mechanical removal process. The remarkably smooth surface was due to the decrease in penetration depth of the abrasive into the wafer. The results of this study provided a feasible strategy to satisfy the high efficiency and damage-free polishing requirements for sapphire planarization.
关键词: chemical mechanical polishing,composite abrasives,polyelectrolyte,surface roughness,sapphire,material removal rate
更新于2025-09-23 15:22:29
-
Modeling and multiresponse optimization of cutting parameters in SPDT of a rigid contact lens polymer using RSM and desirability function
摘要: Amidst different conventional contact lens manufacturing techniques, single-point diamond turning (SPDT) is one of the recently developed ultra-high precision machining techniques employed in the fabrication of advanced contact lenses due to its capability of producing high optical surfaces of complex shapes and nanometric accuracy. SPDT is regarded as an effective process for the generation of high-quality functional surfaces in optical industries. However, despite advances in the ultra-high precision machining, it is not always easy to achieve a high-quality surface finish with maximum productivity. Machining parameters, namely cutting speed, feed rate, and depth of cut, play the lead role in determining the machine economics and quality of machining. The present study focuses on the determination of the optimum cutting conditions leading to minimum surface roughness as well as electrostatic charge and maximum productivity, in SPDT of the polymethyl methacrylate (PMMA) contact lens polymer using monocrystalline diamond cutting tool. The optimization is based on the response surface methodology (RSM) together with the desirability function approach. In addition, a mathematical model is developed for surface roughness (Ra), electrostatic charge (ESC), and material removal rate (MRR) using RSM regression analysis for a rigid contact lens polymer by the Design-Expert software. RSM allowed the optimization of the cutting conditions for minimal surface roughness, electrostatic charge, and maximal material removal rate which provides an effective knowledge base for process parameters, to make its enhancement of process performance in SPDT of contact lens polymer.
关键词: Electrostatic charge,Response surface methodology,Material removal rate,Surface roughness and optimization,PMMA contact lens polymer,Single-point diamond turning
更新于2025-09-23 15:22:29
-
[Micro/Nano Technologies] Micro and Nano Fabrication Technology Volume 1 || Bonnet Polishing of Microstructured Surface
摘要: Microstructured surfaces have been adopted in various and wide applications. Different types of microstructures made of ductile materials can be generated by cutting process, for example, turning and milling with speci?ed diamond cutters. However, these processes generally are not capable to handle with hard and brittle materials which are called dif?cult-to-machine materials. Computer-controlled ultra-precision polishing with bonnet provides an enabling solution to generate microstructures due to its feasible in?uence function. With proper machining parameters, speci?ed shape of the tool in?uence function is hence obtained, and then with aid of tool path planning, microstructured surface topography is generated, especially for those dif?cult-to-machine materials. In this chapter, research work for generating microstructured surface by computer-controlled ultra-precision bonnet polishing is presented. The material removal characteris- tics and tool in?uence function of bonnet polishing are explained, and a multi- scale material removal model and a surface generation model were developed. Surface generation of microstructures by single precess polishing and swing precess polishing is explained in details. A series of simulation and real polishing experimental studies are undertaken based on a seven-axis ultra-precision freeform polishing machine. The generated microstructured surfaces with various patterns have been analyzed. The research results have demonstrated that the proposed bonnet polishing provides an enabling and effective approach for generating microstructured surfaces.
关键词: Modelling,Bonnet polishing,Ultra-precision machining,Dif?cult-to- machine material,Precess polishing,Surface generation,In?uence function,Computer controlled polishing,Microstructured surface,Multi-scale material removal,Simulation
更新于2025-09-23 15:21:01
-
Spherical Mirror and Surface Patterning on Silicon Carbide (SiC) by Material Removal Rate Enhancement Using CO2 Laser Assisted Polishing
摘要: Silicon carbide (SiC) is well known as an excellent material for high performance optical applications because it offers many advantages over other commonly used glasses and metals. The excellent attributes of SiC include high strength, high hardness, low density, high thermal resistance, and low coefficient of thermal expansion. The effect of CO2 laser and its tool path on SiCwere investigated. The process started by creating laser pre-cracks on the desired pattern. Subsequently, laser assisted polishing was conducted on the same tool path. The surface showed a sharp increase in material removal in the areas with laser pre-cracks. This high difference in material removal was used not only to fabricate a ? 1100?mm concave mirror with 127?μm in depth but also to generate macro and micro patterns. Grooves from 2?mm to 200?μm in width and 5?μm to 20?μm depth were successfully generated.
关键词: Material removal rate,CO2 laser,Patterning,Polishing,Hybrid
更新于2025-09-23 15:21:01
-
Deep and high precision cutting of alumina ceramics by picosecond laser
摘要: Ceramics possess high thermal and chemical resistance, low density, and high compressive strength; however, the machining complications imposed by their inherent brittleness limit their range of applications. Laser cutting technology can offer an automated manufacturing technique for machining these brittle materials. In this paper, a laser cutting method, so-called wobbling, was developed for performing deep, high precision, and defect-free laser cutting of industrial grade alumina ceramics. This work explored picosecond laser process parameters such as focal position, linear speed, and wobble amplitude in order to control cut depth and optimize cut quality in terms of kerf width, kerf taper, surface cleanness, while avoiding crack formation. The morphology and cut quality were evaluated using 3D laser scanning microscopy and scanning electron microscopy (SEM). Picosecond laser cutting process parameters were optimized, achieving a maximum material removal rate of ~10 mm3/min. It was shown that the laser cutting process developed via these experiments represents an effective and efficient manufacturing tool that can be incorporated in engineered net shaping systems.
关键词: Laser cutting,Material removal rate,Ablation,Ultrafast laser micromachining,Alumina ceramics
更新于2025-09-23 15:21:01
-
Theoretical model and experimental analysis of non-uniform material removal during full-aperture polishing
摘要: Full-aperture polishing is a key process in the fabrication of large flat optical elements with a high-precision surface figure. Controlling of the surface figure, which is primarily dependent on the material removal distribution, during the polishing process is challenging. In this study, a novel model is proposed to calculate the material removal distribution and the resultant surface figure. The model determines the material removal amount of points on the workpiece by considering the kinematic parameters and pressure distribution along the sliding trajectory relative to the pad. Moreover, the pressure distribution during the polishing process is acquired from the mechanical and morphological characteristic of polishing pad. With this model, the final surface figures under several polishing conditions were simulated and were found to be in close agreement with the experimental results.
关键词: Full-aperture polishing,Surface figure,Pressure distribution,Material removal distribution
更新于2025-09-23 15:21:01
-
Laser cutting optimization model with constraints: Maximization of material removal rate in CO <sub/>2</sub> laser cutting of mild steel
摘要: Taking full advantage of what laser cutting technology offers in terms of achieving superb quality cuts at low cost and high production rates requires the optimization of laser cutting parameters. This implies the need to formulate and solve different laser cutting optimization problems. In this article, an optimization model for CO2 laser cutting of mild steel is developed. The laser cutting optimization problem was explicitly formulated as a single-objective optimization problem with five non-linear constraints of the equality, inequality and range type. The goal was to determine the laser cutting parameter values so as to maximize the material removal rate while simultaneously considering practical process constraints related to dross formation, kerf width, perpendicularity deviation, surface roughness and severance energy. Two crossed experimental designs of different resolutions were performed in order to define six mathematical models, which were used in the formulation of the optimization problem. For the purpose of optimization, the exhaustive iterative search algorithm was applied, since it determines solutions whose optimality is guaranteed in the given discrete space of input variable values. The practical usability of the developed laser cutting optimization model and the effectiveness of the applied optimization approach were proved while solving a real case study aimed at the optimization of laser cutting parameters for cutting parts for the furnace industry.
关键词: mild steel,CO2 laser cutting,optimization model,material removal rate,non-linear constraints
更新于2025-09-23 15:19:57
-
Numerical-experimental study on polishing of silicon wafer using magnetic abrasive finishing process
摘要: Silicon wafer as a brittle material is extensively used in semiconductors. The surface quality of this material significantly affects the quality and efficiency of related components. In this study, the coupled algorithm of SPH/FEM is used to simulate the surface polishing of silicon wafers with Magnetic Abrasive Finishing process. The effects of rotational speed and machining gap on percent change in surface roughness (%?Ra) and material removal (MR) are comprehensively analyzed with simulations and experiments. Furthermore, the material removal mechanism in wafers was investigated by using AFM. Our observations showed that both micro-fracture and micro-cutting mechanisms might happen and it highly depends on polishing parameters. Results of the simulations and experimental data showed that MR and %?Ra value increase with increasing rotational speed and decreasing machining gap. According to our experimental findings, maximum %?Ra and MR are 65% and 39.09 mg, respectively.
关键词: Material removal,Surface Roughness,Magnetic Abrasive Finishing,Al2O3,FEM/SPH,Silicon Wafer,Nano-finishing
更新于2025-09-19 17:15:36
-
Improvement of ablation capacity of sapphire by gold film-assisted femtosecond laser processing
摘要: Sapphire is widely used in civilian and military equipment owing to its superior optical and mechanical properties. Femtosecond laser has been demonstrated to be an effective tool to process sapphire material. However, the direct processing of sapphire by femtosecond laser still meets some challenges, such as poor ablation morphology and low laser energy absorption. In this work, femtosecond laser processing of sapphire coated with a 12-nm-thick gold film (Au-coated sapphire) has been investigated. The experimental results have revealed that the ablation morphology of Au-coated sapphire has been improved, featuring fewer molten materials and thermal cracks, as well as regular crater shape and uniform periodic surface structures. It has also been found that, under 100 shots condition, the threshold fluence of Au-coated sapphire is reduced by about 56% compared to that of uncoated one. Meanwhile, the incubation effect of Au-coated sapphire is stronger than that of uncoated one. We also illustrate that the material removal rate of Au-coated sapphire is increased up to about two times higher than that of uncoated one. In order to reveal the effective mechanism of the gold film in the laser processing of sapphire, the energy transfer process among incident photons, free electrons and sapphire lattice phonons was studied. Our study provides a guidance for improving the laser ablation capacity of sapphire.
关键词: Gold film,Sapphire,Material removal rate,Ablation morphology,Femtosecond laser processing
更新于2025-09-19 17:13:59