- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Recombination Behaviour of Passivated Emitter and Rear Cell (PERC) Bifacial Silicon Solar Module under Different Illuminations
摘要: Bifacial silicon solar module has received considerable attention in recent years due to increasing the performance of photovoltaic plants. The passivated emitter and rear cell (PERC) bifacial silicon solar cell reduces contact improves open-circuit voltage and cell recombination, and performance. In this paper, recombination behaviour of passivated emitter and rear cell (PERC) bifacial silicon solar module under different illuminations was investigated. It is found that the J01 of bifacial PERC solar module decreases with increasing irradiance intensity, and the J02 is nearly constant from low injection to high injection. This shows that the PERC bifacial silicon solar module has more advantage in the field compared to Al-BSF solar module.
关键词: PERC,bifacial,irradiance intensity,recombination behaviour
更新于2025-09-23 15:21:01
-
An Effective Method for Recovering Nonradiative Recombination Loss in Scalable Organic Solar Cells
摘要: Regarded as a critical step in commercial applications, scalable printing technology has become a research frontier in the field of organic solar cells. However, inevitable efficiency loss always occurs in the lab-to-manufacturing translation due to the different fabrication processes. In fact, the decline of photovoltaic performance is mainly related to voltage loss, which is mainly affected by the diversity of phase separation morphology and the chemical structures of photoactive materials. Fullerene derivative indene-C60 bisadduct (ICBA) is introduced into a PBDB-T-2F:IT-4F system to control the active layer morphology during blade-coating process. Accordingly, as a symmetrical fullerene derivative, ICBA can regulate the crystallization tendency and molecular packing orientation and suppress charge carrier recombination. This ternary strategy overcomes the morphology issues caused by weaker shear impulse in blade-coating process. Benefiting from the reduced nonradiative recombination loss, 1.05 cm2 devices are fabricated by blade coating with a power conversion efficiency of 13.70%. This approach provides an effective support for recovering the voltage loss during scalable printing approaches.
关键词: nonradiative recombination loss,organic solar cells,large-area solar cells,blade coating
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - On the impact of the metal work function on the recombination in passivating contacts using quasi-steady-state photoluminescence
摘要: Understanding the impact of metal contacts on the recombination within a passivated silicon wafer is crucial for the optimization of various photovoltaic devices such as passivating-contact-based solar cells. To investigate the effect of the metal work function, a selection of metals is applied to aluminum-oxide-passivated n-type crystalline silicon wafers. The saturation current density of the metalized contact (J0m) is determined using the quasi-steady-state photoluminescence method and used as a figure of merit to quantify the effect. We find that J0m increases with the metal work function and that this effect is modulated with the passivation layer thickness. It is more pronounced for thinner passivation layers, which can be attributed to a significant change in the populations of electrons and holes near the silicon surface induced by the metal. Meanwhile thicker layers prevent the charge transfer between the silicon and metal more efficiently leading to insignificant changes in J0m. Based on these findings, we suggest a suitable metal work function range to optimize contact recombination in silicon-based solar cells.
关键词: passivating contacts,surface recombination,saturation current density,quasi-steady-state photoluminescence,work function,Effective lifetime,silicon solar cells
更新于2025-09-23 15:21:01
-
Improvement of Cu(In,Ga)Se <sub/>2</sub> solar cell performance by thiourea treatment
摘要: We investigated the effects of a thiourea treatment performed to the absorber of Cu(In,Ga)Se2 (CIGS) solar cells. The thiourea treatment successfully improved the open-circuit voltage, fill factor, and conversion efficiency of the solar cells. Reduced ideality factor and reverse saturation current density demonstrated that the suppression of carrier recombination contributed to the improvement in solar cell performance. Increased intensity in cross-sectional electron-beam-induced current measurements confirmed the improved film quality with the thiourea treatment. Additionally, an enhanced carrier density observed with the treatment suggests the passivation of donor-type defects. These results indicate that the thiourea treatment is promising to improve the absorber quality and enhance the performance of CIGS solar cells.
关键词: thiourea treatment,solar cell,Cu(In,Ga)Se2,carrier recombination,film quality
更新于2025-09-23 15:21:01
-
Decreasing Energy Loss and Optimizing Band Alignment for High Performance CsPbI3 Solar Cells through Guanidine Hydrobromide Post-Treatment
摘要: On account of the superior thermal stability and applicable band gap (~ 1.7 eV), the inorganic halide CsPbI3 perovskite solar cells (PSCs) have aroused intense interest in recent years. Nevertheless, the CsPbI3 PSCs are still facing a problem of high energy loss (Eloss) which leads to low open-circuit voltage (VOC). Herein, we developed efficient CsPbI3 PSCs through guanidine hydrobromide (GABr) post-treatment on the surface of CsPbI3 film. After optimizing, a supreme power conversion-efficiency (PCE) of 18.02% was obtained, which was higher than the original one (16.58%). By further studying, the characterization of passivation was found, which led to the reduced nonradiative recombination rate. Besides, the band alignment between CsPbI3 and interface layer is also optimized, leading to the decreased electron transport barrier for electron collection, and superb hole contact for furnishing a driving force in the hole transferring and forbidding electron to flow in the opposite direction.
关键词: energy loss,GABr,nonradiative recombination,CsPbI3,band alignment
更新于2025-09-23 15:21:01
-
Semiclassical theory of laser-assisted radiative recombination
摘要: We study the process of laser-assisted radiative recombination of an electron with a proton by using a semiclassical approach involving calculation of classical trajectories in combined laser and Coulomb fields. Due to chaotic scattering in the combined fields, the radiation probability as a function of the impact parameter and the constant phase of the laser field exhibits chaotic behavior and fractal structures. We obtain a strong enhancement of the recombination cross section as compared to the laser-free case due to the Coulomb focusing effect. For sufficiently low incident electron velocities the cross section becomes infinite, and we limit it by assuming a finite laser pulse duration. With the pulse duration tp = 5 ps we obtain the gain factor for capture into the ground state of the hydrogen atom of about 220 for infrared fields in the intensity range 109–1012 W/cm2. The gain factor grows with tp but slower than linearly.
关键词: chaotic scattering,fractal structures,semiclassical approach,Coulomb focusing effect,laser-assisted radiative recombination
更新于2025-09-23 15:21:01
-
Suggestions on Efficiency Droop of GaN-based LEDs
摘要: InGaN/GaN-based light-emitting diodes (LEDs) are widely used in modern society and industry among different areas. However, InGaN/GaN LEDs suffer from an efficiency droop issue: The internal efficiency decreases during high current injection. The efficiency droop significantly affects the development of GaN-based LEDs devices in efficiency and light-output areas. Therefore, the improvement of the droop phenomenon has become a significant topic. This paper introduces several possible mechanisms of droop phenomenon based on different hypotheses including Auger Recombination, Carrier Delocalization and Electron Leakage. Furthermore, some proposals to mitigate efficiency droop, including semipolar LEDs, electron blocking layer(EBL), quaternary alloy and chip design will be discussed and analyzed. Also, it will provide some suggestions for the further optimization of droop phenomenon in each proposal.
关键词: electron blocking layer,semipolar LEDs,GaN-based LEDs,Auger Recombination,chip design,quaternary alloy,Carrier Delocalization,Electron Leakage,efficiency droop
更新于2025-09-23 15:21:01
-
Reduced Non-radiative Recombination Energy Loss Enabled Efficient Polymer Solar Cells via Tuning Alkyl Chain Positions on Pendent Benzene Units of Polymers
摘要: Non-radiative recombination energy loss (ΔE3) plays a key role in enhancing device efficiencies for polymer solar cells (PSCs). Up to now, there is no clear resolution for reducing ΔE3 via molecular design. Herein, we report two conjugated polymers, PBDB-P-p and PBDB-P-m, which are integrated from benzo[1,2-b:4,5-b′]dithiophene (BDT) with alkylthio chain substituted at para- or meta- position on pendent benzene and benzo[1,2-c:4,5-c′]dithiophene-4,8-dione (BDD). Two polymers have different temperature-dependent aggregation properties, but similar molecular energy levels. When BO-4Cl was used as acceptor to fabricate PSCs, the device of PBDB-P-p:BO-4Cl displayed a maximal power conversion efficiency (PCE) of 13.83%, while the best device of PBDB-P-m:BO-4Cl exhibited a higher PCE of 14.12%. The close JSCs and FFs in both PSCs are attributed to their formation of effective nanoscale phase-separation as confirmed by atomic force microscopy (AFM) measurements. We find that the PBDB-P-m-based device has one order of magnitude higher of electroluminescence quantum efficiency (EQEEL) than that in PBDB-P-p-based one, which could arise from the relatively weak aggregation in PBDB-P-m-based film. Thus, the PBDB-P-m-based device has a remarkably enhanced VOC of 0.86 V in contrast to 0.80 V in PBDB-P-p-based device. This study offers a feasible structural optimization way on the alkylthio side chain substitute position on the conjugated polymer to enhance VOC by reducing non-radiative recombination energy loss in resulting PSCs.
关键词: polymer solar cells,open-circuit voltage,non-radiative recombination energy loss,polymer donor,alkylthio substituted position
更新于2025-09-23 15:21:01
-
Compositional Engineering for Compact Perovskite Absorber Fabrication Toward Efficient Photovoltaics
摘要: The compactness of perovskite active layers plays an essential role in the energy conversion. In order to promote the crystal quality, poly(allylamine hydrochloride) (PAH) was employed as an additive to promote the crystal quality for the active layers. The cationic additive significantly enhanced the compactness of the perovskite absorber film, which promoted the charge transport efficiency, resulting in an average efficiency over 19%. The unique properties of PAH make it act as a “glue” to link the grain boundaries and promote the crystal quality, thus favoring the charge transfer and suppressing the recombination under the certain doping amount. Meanwhile, the stability of perovskite solar cells in humidity environments was dramatically promoted without encapsulation. The sample has a long shelf life (over 600 h). This strategy can also be used to guide the crystal development of other optoelectronic devices, such as light-emitting diodes and lasers, which have recently involved the hybrid perovskite materials.
关键词: crystal qualities,Cationic additive,stability in humidity,perovskite solar cells,recombination decrease
更新于2025-09-23 15:21:01
-
AIP Conference Proceedings [AIP Publishing 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019) - Bikaner, India (14a??15 October 2019)] 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019) - Effect of polarization field and Auger recombination on internal quantum efficiency of InGaN/GaN blue LED
摘要: InxGa1-x N/GaN blue LEDs faces significant efficiency droop issue. The causes of efficiency droop are Shockley Read Hall recombination (SRH), Auger recombination (AR), carrier delocalization and electron leakage. The SRH, Auger and electron leakage are functions of carrier concentration and temperature. InGaN/GaN superlattice has polarization electric field at interface. In this work we explore effect of polarization electric field on efficiency droop. It is shown that polarization field enhances Auger coefficient resulting in more droop in internal quantum efficiency of blue LED. Thus, for improvement in efficiency, polarization field required to be minimized which requires growth of the material in m- plane instead of c-plane.
关键词: efficiency droop,polarization electric field,Auger recombination,blue LED,InGaN/GaN
更新于2025-09-23 15:21:01