- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Performance Limits of FSO Based SAC-OCDMA System Under Weather Conditions
摘要: In this paper, the Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) is investigated in Free Space Optics (FSO) using Zero Cross Correlation (ZCC) codes to evaluate its performance limits in terms of link range. The system is analyzed under clear, haze, moderate fog and dense fog weather conditions. This system has been evaluated numerically and by simulation analysis by maintaining the transmitted power at 10 dBm, for safety reason, according to International Telecommunication Union (ITU) and minimum acceptable BER of 10–9. The simulation results shown that the present system can transmit 622 Mbps/1 Gbps up to maximum link range of 1450 m/1100 m and 61 m/54 m under clear and dense fog conditions, respectively.
关键词: fog,haze,free space optic (FSO),spectral amplitude coding optical code division multiple access (SAC-OCDMA),zero cross-correlation (ZCC)
更新于2025-09-23 15:23:52
-
[IEEE 2018 7th Electronic System-Integration Technology Conference (ESTC) - Dresden, Germany (2018.9.18-2018.9.21)] 2018 7th Electronic System-Integration Technology Conference (ESTC) - Integration with Light
摘要: This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on micro-bumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.
关键词: LIFT,low temperature bonding,NIR curing,conductive adhesive,lead-free SAC solder,photonic soldering,flip-chip bonding,laser printing
更新于2025-09-23 15:23:52
-
[ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - Microstructural Evolution in SAC305 and SAC-Bi Solders Subjected to Mechanical Cycling
摘要: Fatigue failure of solder joints is one of the most common methods by which electronic packages fail. Electronic assemblies usually must cope with a temperature varying environment. Due to the mismatches in coefficients of thermal expansion (CTEs) of the various assembly materials, the solder joints are subjected to cyclic thermal-mechanical loading during temperature cycling. The main focus of this work is to investigate the changes in microstructure that occur in SAC305 and SAC+Bi lead free solders subjected to mechanical cycling. In this paper, we report on results for the SAC+Bi solder commonly known as SAC_Q or CYCLOMAX. Uniaxial solder specimens were prepared in glass tubes, and the outside surfaces were polished. A nanoindenter was then used to mark fixed regions on the samples for subsequent microscopy evaluation. The samples were subjected to mechanical cycling, and the microstructures of the selected fixed regions were recorded after various durations of cycling using Scanning Electron Microscopy (SEM). Using the recorded images, it was observed that the cycling induced damage consisted primarily of small intergranular cracks forming along the subgrain boundaries within dendrites. These cracks continued to grow as the cycling continued, resulting in a weakening of the dendrite structure, and eventually to the formation of large transgranular cracks. The distribution and size of the intermetallic particles in the inter-dendritic regions were observed to remain essentially unchanged.
关键词: Bismuth,Microstructure,SAC Alloy,Hysteresis,Evolution,Lead Free Solder,Cyclic Stress-Strain Curve
更新于2025-09-23 15:22:29
-
[IEEE 2018 International Wafer Level Packaging Conference (IWLPC) - San Jose, CA, USA (2018.10.23-2018.10.25)] 2018 International Wafer Level Packaging Conference (IWLPC) - Board Level Reliability Study of Next Generation Large Die Wafer Level Chip Scale Package Structures
摘要: Wafer Level Chip Scale Package (WLCSP) technologies are being used more often in electronic components due to their smaller size and lower cost, and are being applied to larger die and ball matrix sizes. Originally implemented mainly in mobile devices (i.e., smartphones), WLCSP components are now frequently used in new product categories that have more stringent use conditions than the mobile space. The harsher use conditions raise a concern of solder joint reliability, especially in temperature cycling due to the difference in the coefficient of thermal expansion between the silicon die and the laminate motherboard. While cycle life can be extended by using underfill, underfilling makes the surface mount assembly process more complex and costly, increases cycle time and inhibits rework. To solve the challenge of extending cyclic life without underfill, new WLCSP structures and materials have been proposed. This paper describes the investigation of some of these innovative solutions through motherboard assembly and board level reliability testing. The package variables consisted of two WLCSP structures utilizing ball support mechanisms and a Bismuth (Bi) bearing solder ball that is expected to increase fatigue life. Packages were produced separately with each variable, along with legs that included both new packages and new alloy. The finished assemblies, along with a control leg of standard structure/solder, were subjected to drop testing and temperature cycling. Solder joint integrity was monitored in-situ to accurately identify duration to failure for Weibull analysis. The results clearly show that this new generation of WLCSP structures can offer dramatically improved fatigue life without a significant sacrifice in drop reliability. This benefit should allow the use of WLCSPs in more challenging environments, as well as providing designers the option of using larger package sizes in existing mobile designs.
关键词: drop test,SACQ,board level reliability (BLR),temperature cycling,Wafer Level Chip Scale Package (WLCSP),SAC
更新于2025-09-23 15:22:29
-
Microstructure Influence of SACX0307-TiO2 Composite Solder Joints on Thermal Properties of Power LED Assemblies
摘要: The effect of the microstructure of solder joints on the thermal properties of power LEDs is investigated. Solder joints were prepared with different solder pastes, namely 99Sn0.3Ag0.7Cu (as reference solder) and reinforced 99Sn0.3Ag0.7Cu–TiO2 (composite solder). TiO2 ceramic was used at 1 wt.% and with two different primary particle sizes, which were 20 nm (nano) and 200 nm (submicron). The thermal resistance, the electric thermal resistance, and the luminous efficiency of the power LED assemblies were measured. Furthermore, the microstructure of the different solder joints was analyzed on the basis of cross-sections using scanning electron and optical microscopy. It was found that the addition of submicron TiO2 decreased the thermal and electric thermal resistances of the light sources by 20% and 16%, respectively, and it slightly increased the luminous efficiency. Microstructural evaluations showed that the TiO2 particles were incorporated at the Sn grain boundaries and at the interface of the intermetallic layer and the solder bulk. This caused considerable refinement of the Sn grain structure. The precipitated TiO2 particles at the bottom of the solder joint changed the thermodynamics of Cu6Sn5 formation and enhanced the spalling of intermetallic grain to solder bulk, which resulted in a general decrease in the thickness of the intermetallic layer. These phenomena improved the heat paths in the composite solder joints, and resulted in better thermal and electrical properties of power LED assemblies. However, the TiO2 nanoparticles could also cause considerable local IMC (Intermetallic Compounds) growth, which could inhibit thermal and electrical improvements.
关键词: power LED,SAC composite alloy,TiO2 ceramic,luminous efficiency,thermal resistance,microstructure characterization
更新于2025-09-23 15:19:57
-
Design an efficient SAC–OCDMA system based on coherent and incoherent optical sources to reduce capital expenditure
摘要: Merging two coherent and incoherent optical sources: continuous wave light amplification by stimulated emission of radiations (CW LASER) and light emitting diode (LED) despite the difference in their physical nature from each other could be an efficient approach to expand a highly occupied network while trading-off the cost. In this paper, an efficient SAC–OCDMA system based on coherent and incoherent optical sources (CCIS) is designed. To evaluate CCIS design, fixed right shifting (FRS) code is adopted. FRS is built by utilizing specific type of Jordan matrices with direct algebraic procedures with minimum cross correlation (MCC). Additionally, an MCC elimination process would be more efficiency and can be seen in supporting large number of users. A quantitative comparison between SAC–OCDMA system using LED, CW laser sources and CCIS design is presented. Compared to LED sources, a CCIS design increases the number of supported users by almost three time while a reduction in number of optical sources is obtained by ≈ 50%. As compared to CW Laser sources, a CCIS design shows a reduction in number of optical sources by almost 50% while a lessening in number of supported users by ≈ 21%. A 22.6% cost saving per user is achieved for CCIS design over CW laser for nearly similar performance. It concludes that, CCIS design can provide a good solution for optical communication system.
关键词: BER,CCIS,FRS,SAC–OCDMA,Cost
更新于2025-09-10 09:29:36
-
[ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - Viscoplastic Constitutive Model for High Strain Rate Mechanical Properties of SAC-Q Leadfree Solder After High-Temperature Prolonged Storage
摘要: Electronics in automotive underhood and downhole drilling applications may be subjected to sustained operation at high temperature in addition to high strain-rate loads. SAC solders used for second level interconnects have been shown to experience degradation in high strain-rate mechanical properties under sustained exposure to high temperatures. Industry search for solutions for resisting the high-temperature degradation of SAC solders has focused on the addition of dopants to the alloy. In this study, a doped SAC solder called SAC-Q solder have been studied. The high strain rate mechanical properties of SAC-Q solder have been studied under elevated temperatures up to 200°C. Samples with thermal aging at 50°C for up to 6-months have been used for measurements in uniaxial tensile tests. Measurements for SAC-Q have been compared to SAC105 and SAC305 for identical test conditions and sample geometry. Data from the SAC-Q measurements has been fit to the Anand Viscoplasticity model. In order to assess the predictive power of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test and the model predictions compared with experimental data. Model predictions show good correlation with experimental measurements. The presented approach extends the Anand Model to include thermal aging effects.
关键词: SAC-Q solder,thermal aging,high strain rate,mechanical properties,Anand Viscoplasticity model
更新于2025-09-10 09:29:36
-
[ASME ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, California, USA (Monday 27 August 2018)] ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - Investigation of the Effects of High Temperature Aging on the Mechanical Behavior of Lead Free Solders
摘要: Lead free solders are renowned as interconnects in electronic packaging due to their relatively high melting point, attractive mechanical properties, thermal cycling reliability, and environment friendly chemical properties. The mechanical behavior of lead free solders is highly dependent on the operating temperature. Previous investigations on mechanical characterization of lead free solders have mainly emphasized stress-strain and creep testing at temperatures up to 125 °C. However, electronic devices, sometimes, experience harsh environment applications including well drilling, geothermal energy, automotive power electronics, and aerospace engines where solders are exposed to very high temperatures from 125-200 °C. Mechanical properties of lead free solders at elevated temperatures are limited. In this work, we have investigated the mechanical behavior SAC305 (96.5Sn-3.0Ag-0.5Cu) and SAC_Q (SAC+Bi) lead free solders at extreme high temperatures up to 200 °C. Stress-strain tests were performed on reflowed uniaxial specimens at four elevated temperatures (T = 125, 150, 175, and 200 °C). In addition, changes of the mechanical behavior of these alloys due to isothermal aging at T = 125 oC have been studied. Extreme care has been taken during specimen preparation so that the fabricated solder uniaxial test specimens accurately reflect the solder material microstructures present in actual lead free solder joints. High temperature tensile properties of the solders including initial modulus, yield stress, and ultimate tensile strength have been compared. As expected, our results show substantial degradations of the mechanical properties of lead-free solders at higher temperatures. With prior aging, these degradations become even more significant. Comparison of the results has shown that the addition of Bi to traditional SAC alloys improves their high temperature properties and significantly reduces their aging induced degradations.
关键词: Yield Stress,Ultimate Tensile Strength,Stress-Strain Curve,SAC alloy,Modulus,Lead-Free Solder,Aging
更新于2025-09-09 09:28:46