- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Diamond like carbon films with embedded Cu nanoclusters deposited by reactive high power impulse magnetron sputtering: Pulse length effects
摘要: In the present study diamond like carbon films with embedded Cu nanoclusters (DLC:Cu films) were deposited by reactive high power impulse magnetron sputtering (HIPIMS). HIPIMS pulse length (pulse on time) effects were considered. The dependence of the chemical composition on pulse length was found. Structure of diamond like carbon matrix of the nanocomposite films studied by Raman scattering spectroscopy has indicated weak increase of the sp3/sp2 carbon bond ratio with HIPIMS pulse length. Studies of the shape and dimensions of copper nanoclusters performed by He ion microscopy have shown that increase of the HIPIMS pulse on time resulted in increased number of the nanoclusters and subsequent increase of the Cu nanoclusters size. Study of optical properties revealed surface plasmon resonance effect in all investigated films. Correlation between the optical absorption spectra and photoexcited charge carrier relaxation time recorded by the pump probe spectroscopy was found. The highest relaxation time was observed at the excitation wavelength close to the absorption surface plasmon resonance peak wavelength The highest maximum relaxation time was observed for the DLC:Cu film deposited by using HIPIMS pulse of 400 μs on time. It was explained by the dependence of the relaxation time on Cu nanocluster size.
关键词: Pulse length,Diamond-like carbon,High-power pulsed magnetron sputtering,Structure,Optical properties,X-ray photoelectron spectroscopy,Copper,Nanoclusters
更新于2025-09-23 15:23:52
-
Quantitative Measure of the Size Dispersity in Ultrasmall Fluorescent Organic-Inorganic Hybrid Core-Shell Silica Nanoparticles by Small-angle X-ray Scattering
摘要: Small-angle X-ray scattering (SAXS) was performed on dispersions of ultrasmall (d < 10 nm) fluorescent organic-inorganic hybrid core-shell silica nanoparticles synthesized in aqueous solutions (C′ dots) by using an oscillating flow cell to overcome beam induced particle degradation. Form factor analysis and fitting was used to determine the size and size dispersity of the internal silica core containing covalently encapsulated fluorophores. The structure of the organic poly(ethylene glycol) (PEG) shell was modelled as a monodisperse corona containing concentrated and semi-dilute regimes of decaying density and as a simple polydisperse shell to determine the bounds of dispersity in the overall hybrid particle. C′ dots containing single growth step silica cores have dispersities of 0.19-0.21; growth of additional silica shells onto the core produces a thin, dense silica layer, and increases the dispersity to 0.22-0.23. Comparison to FCS and DLS measures of size shows good agreement with SAXS measured and modelled sizes and size dispersities. Finally, comparison of a set of same sized and purified particles demonstrates that SAXS is sensitive to the skewness of the gel permeation chromatography elugrams of the original as-made materials. These and other insights provided by quantitative SAXS assessments may become useful for generation of robust nanoparticle design criteria necessary for their successful and safe use, for example in nanomedicine and oncology applications.
关键词: nanomedicine,size dispersity,core-shell nanoparticles,silica nanoparticles,Small-angle X-ray scattering,PEGylation
更新于2025-09-23 15:23:52
-
Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation
摘要: Black Phosphorus (BP) is emerging as a promising candidate for electronic, optical and energy storage applications, however its poor ambient stability remains a critical challenge. Evaluation of few-layer liquid exfoliated BP during ambient exposure using x-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) allows its surface chemistry to be investigated. Oxidation of liquid exfoliated few-layer BP initially occurs through non-bridging oxide species, which convert to bridging oxide species after ambient exposure. We demonstrate the instability of these bridging oxide species, which undergo hydrolysis to form volatile phosphorus oxides and evaporate from the BP surface. FTIR spectroscopy, scanning transmission electron microscopy and atomic force microscopy were used to confirm the formation of liquid oxides through a continuous oxidation cycle that results in the decomposition of BP. Furthermore, we show that the instability of few-layer BP originates from the formation of bridging oxide species.
关键词: Fourier transform infrared spectroscopy,Black phosphorus,phosphorene,x-ray photoelectron spectroscopy,2D materials,degradation,ambient stability,oxidation
更新于2025-09-23 15:23:52
-
Operando observation of chemical transformations of iridium oxide during photoelectrochemical water oxidation
摘要: Iridium oxide is one of the few catalysts capable of catalyzing the oxygen evolution reaction (OER) in both acidic and basic conditions. Understanding the mechanism of IrOx under realistic photoelectrochemical conditions is important for the development of integrated water splitting systems. Herein, we have developed a highly efficient OER photoanode in pH 1 aqueous solutions based on a sputtered IrOx film and a p+n-Si light absorber, interfaced with sputtered Au layer. Operando high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD XAS) was employed to monitor the oxidation state changes of IrOx during both electrochemical and photoelectrochemical (PEC) water oxidation reactions in pH 1 aqueous solutions. We observed a gradual increase of the average oxidation state of Ir with increasing anodic potential in the pre-catalytic region, followed by a reduction of Ir under O2 evolution conditions. Consistent results were obtained on dark anodes and illuminated photoanodes. However, when the thickness of IrO2 was increased to 2 and 3 nm, the spectral changes became much less pronounced and the reduction of Ir oxidation state after the OER onset was not observed. This is due to the lower surface to bulk ratio, where lattice oxygen sites in the bulk are not accessible for the formation of hydroxide. More generally, the operando method developed here can be extended to other materials, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.
关键词: oxygen evolution reaction (OER),electrochemical and photoelectrochemical (PEC),high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD XAS),iridium oxide,Operando method
更新于2025-09-23 15:23:52
-
X-ray Diffraction Analysis of the Angular Stability of Self-Catalyzed GaAs Nanowires for Future Applications in Solar Light Harvesting and Light Emission Devices
摘要: Semiconductor nanowires are a class of materials that recently have gained increasing interest in solar cell applications and light emitting devices. Finding reproducible processing conditions is fundamental for their future mass production. In this work, the stability of individual epitaxial GaAs nanowires (NWs) under molecular beam epitaxy (MBE) processing conditions is studied by means of a time-resolved in-situ micro X-ray diffraction (XRD) method and scanning electron microscopy. Our proposed micro XRD method is a non-destructive characterization technique where individual nano-objects of different dimensions, crystal orientations, and structures are detectable under MBE processing conditions. NWs were grown by self-catalyzed MBE onto pre-patterned Si(111) substrate. When exposed to MBE processing conditions at 610 °C without supply of source material, or with only arsenic supply, we observe evaporation from the facets with no indication of gallium droplet formation. Furthermore, the NWs, which are initially grown perpendicular to the substrate surface become angularly unstable i.e. the NWs tilt and eventually lie down on the substrate surface. Before falling down, our micro XRD data evidenced vibrations/bending of the NWs. Interestingly, when exposed to the original growth conditions which include gallium and arsenic supply, the vibrations/bending are suppressed and the tilting can be reversed. The findings in this paper can also provide insights towards engineering of self-catalyzed GaAs NW growth by removal of parasitic growth objects which inevitably grow together with NWs.
关键词: time-resolved,in-situ,mechanical stability,micro X-ray diffraction,nanowire,annealing,GaAs
更新于2025-09-23 15:23:52
-
System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications
摘要: X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.
关键词: X-ray phase contrast imaging,Dark-field imaging,Talbot-Lau interferometry,compact design,High energy phase contrast imaging
更新于2025-09-23 15:23:52
-
Color-center formation and thermal recovery in X-ray and electron-irradiated magnesium aluminate spinel
摘要: We have studied the formation of color centers in magnesium aluminate spinel (MgAl2O4) by X-ray and electron irradiations near room temperature (RT). For this purpose, Cu Kα radiation and three electron energies (1.0, 1.4, and 2.5 MeV) were used for variable fluences (up to 4.2 × 10^18 cm^?2). Off-line UV-visible absorption spectra were recorded at RT as well as at low temperature down to 27 K after electron irradiation. The dependence of the production rate of F centers (oxygen vacancies) on the electron energy yields a threshold displacement energy of 190 ± 10 eV for oxygen atoms at RT, which is much higher than the determinations by molecular-dynamics simulations. Such a discrepancy is discussed on the basis of available migration data of point defects in spinel. Equipartition of F0 and F+ centers, i.e., the neutral (VO^x) and singly ionized (VO^.) oxygen vacancies, is reached for high electron fluences. Moreover, the evolution of the width of color-center absorption bands versus temperature is interpreted with the classical theory for F centers (neutral halogen vacancies) in alkali halides. The Stokes shifts are deduced from the temperature dependence of the absorption bandwidths of color centers like for alkali halides and alkaline-earth oxides. Finally, isothermal annealing data for long annealing time show a non-zero asymptotic behavior for both F0 and F+ centers. This uncommon behavior is interpreted by charge exchange processes leading to an equilibrium state between those two color centers.
关键词: thermal recovery,X-ray irradiation,color centers,threshold displacement energy,F centers,electron irradiation,absorption spectroscopy,magnesium aluminate spinel
更新于2025-09-23 15:23:52
-
High infrared transmittance CdS single crystal grown by physical vapor transport
摘要: Φ55 × 15 mm2 CdS bulk single crystal with high infrared transmittance was grown by physical vapor transport. The single crystal has a consistent structure from top to bottom, which was confirmed by X-ray diffraction. The (002) full-width at half-maximum of the X-ray diffraction was measured to be 60.00 arcsec, indicating a good quality of the structure. Hall mobility, specific resistivity, and carrier concentration for the top and bottom of the crystal were observed as well. Transmittance for the CdS single crystal was measured to be higher than 70% from 2.5 to 4.5 μm, making the single crystal an important candidate for infrared window materials. Furthermore, the absorption mechanism of the CdS single crystal was analyzed.
关键词: physical vapor transport,X-ray diffraction,semiconducting materials,single crystal growth
更新于2025-09-23 15:23:52
-
X-ray photoelectron spectroscopy and Raman microscopy of a ferroan platinum crystal from the Kondyor Massif, Russian Far East
摘要: X-ray Photoelectron Spectroscopy was used to study a ferroan platinum crystal from the Kondyor Massif, Russian Far East. Prior to the X-ray Photoelectron Spectroscopic analyses, the nature of the crystal was confirmed by X-ray diffraction. The survey scan showed mainly the presence of Pt and Fe, with smaller amounts of O and Si. The high resolutions spectra of the Pt 4f and Fe 2p showed 18.3 atom% Fe in the crystal, which puts the composition on the lower boundary for ferroan platinum and confirms earlier analyses using other methods such as Scanning Electron Microscopy-Energy Dispersive X-ray analysis/microprobe. The binding energy of the Pt 4f5/2 was 74.0 eV and Pt 4f7/2 70.5 eV, while the Fe 2p3/2 for metallic Fe was observed at 707.2 eV. The Fe 2p3/2 for metallic Fe was significantly sharper than that of Fe 2p3/2 at 710.7 eV associated with surface material. The Raman spectrum was dominated by the Pt–Pt stretching mode at 253 cm?1. Changed orientation resulted in the observation of two bands at 127 and 139 cm?1, interpreted as being due to stretching modes of two Pt–Pt bonds with the third bond to Fe and Pt fixed. The presence of Ca-Fe-Al-Mg-Si-O on the surface was probably associated with the presence of a clinopyroxene. These minerals can be expected since the crystal came originally from a clinopyroxenite-dunite matrix. The spectra showed a variety of interferences, e.g. Al 2p with Pt 4f, Mg 2p with Fe 3p, and Ca 2p1/2 with Mg Auger, making exact determinations of the ratios of these elements difficult.
关键词: surface chemistry,platinum group minerals,X-ray photoelectron spectroscopy,Raman spectroscopy,Platinum
更新于2025-09-23 15:23:52
-
Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science
摘要: We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2?x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.
关键词: mixed ionic-electronic conducting membrane,x-ray nanoscale imaging,multimodal imaging,high spatial resolution
更新于2025-09-23 15:23:52