- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interface modified flexible printed conductive films via Ag <sub/>2</sub> O nanoparticle decorated Ag flake inks
摘要: A new approach to stable, low resistance inexpensive printed flexible conductive inks is proposed. Silver inks have been extensively studied and commercialized for applications in printed electronics due to the inherent high conductivity and stability of silver, even in particulate-based percolation networks processed at temperatures compatible with low cost polymer films such as polyethylene terephthalate (PET). Recent interest in flexible and even stretchable circuits, however, has presented new challenges for particle-based inks as mechanical strains can result in the opening of critical particle-to-particle contacts. Here we report a facile, low cost method for the single step synthesis of stable, printable nanoscale Ag2O-decorated Ag flake inks which can be converted to highly conductive Ag films at 150°C curing temperature without the use of limited shelf life organometallics or low metal loading nanoparticles to modify the interface between silver flakes. Analysis indicate that decoration of Ag flakes with Ag2O nanoparticles (NPs) during ink synthesis improves the conductivity and flexibility of printed silver films by forming bridging interconnections between Ag flakes after low temperature reduction of the Ag2O NPs. In this work, printed nano-decorated silver conductors with starting oxide to metal weight ratios of 5:95 exhibited lateral resistivities lower than 1.5×10-5 ? cm, which was 35% less than films derived from undecorated Ag flake inks of the same total Ag loading and binder system. This resistivity difference increased to 45% after cyclic bend testing showing increased resilience to repeated flexing for the nano-decorated inks. Through detailed compositional and morphological characterizations, we demonstrate that such improved conductivity and flexibility is due to a more effective bridging afforded by the in-situ synthesized Ag NPs on the surface of Ag flakes. These properties, combined with the simplified syntheses method of the nano-ink, make the material a viable, advantageous alternative to the limited number of stretchable conductors currently available.
关键词: Ag2O nanoparticle-decorated Ag flake inks,printed conductive films,interface modification,silver ink
更新于2025-11-14 17:04:02
-
[Lecture Notes in Electrical Engineering] Advances in Graphic Communication, Printing and Packaging Volume 543 (Proceedings of 2018 9th China Academic Conference on Printing and Packaging) || Application of Anthracene-Based Fluorescent Materials on Green Fluorescent Inkjet Ink
摘要: Presently, the existing green ?uorescent materials are rare earth luminescent material, which cannot reach the requirement of inkjet ink on dispersion and stability because of the inferior solubleness. In this paper, the ?uorescent inkjet inks were prepared by anthracene-based derivatives, ink’s printability was tested and the relationship between molecular structure and ink’s printability was researched systematically. Finally, the optimal formula of green ?uorescent inkjet ink was obtained. The results showed the photophysical properties of proofs a–c had obvious change comparing with inks a–c and the contact angle of ink d was the biggest of all due to the planar construction of ?uorescent material with large conjugate degree. The green ?uorescent material: 9, 10-bis (4-methoxyphenylethynyl) anthracene with 0.5% and crylic acid B817 with 12% formed the optimal formula. The printing quality of ink prepared by the optimal formula can accord with the demand of digital printing quality.
关键词: Fluorescent inkjet ink,Photophysical properties,Ink’s printability,Anthracene-based ?uorescent materials
更新于2025-11-14 15:26:12
-
Stepped Annealed Inkjet-Printed InGaZnO Thin-Film Transistors
摘要: The preparation of thin-film transistors (TFTs) using ink-jet printing technology can reduce the complexity and material wastage of traditional TFT fabrication technologies. We prepared channel inks suitable for printing with different molar ratios of their constituent elements. Through the spin-coated and etching method, two different types of TFTs designated as depletion and enhancement mode were obtained simply by controlling the molar ratios of the InGaZnO channel elements. To overcome the problem of patterned films being prone to fracture during high-temperature annealing, a stepped annealing method is proposed to remove organic molecules from the channel layer and to improve the properties of the patterned films. The different interfaces between the insulation layers, channel layers, and drain/source electrodes were processed by argon plasma. This was done to improve the printing accuracy of the patterned InGaZnO channel layers, drain, and source electrodes, as well as to optimize the printing thickness of channel layers, reduce the defect density, and, ultimately, enhance the electrical performance of printed TFT devices.
关键词: thin-film transistor,annealing,plasma treatment,ink-jet printing
更新于2025-10-24 16:37:46
-
Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics
摘要: Through the use of solution-based materials, the field of printed organic electronics has not only made new devices accessible, but also allows the process of manufacture to move toward a high throughput industrial scale. However, while solution-based active layer materials in these systems have been studied quite intensely, the printed electrodes and specifically the transparent conductive anode have only relatively recently been investigated. In this progress report, the use of metal nanoparticles within printed organic electronic devices is highlighted, specifically their use as replacement of the commonly used indium tin oxide transparent conductive electrode within organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). A cross fertilization between the applications is expected since an OPV device is essentially an inversely operated OLED. This report aims to highlight the use of inkjet-printed nanoparticles as cost-effective electrodes for printed optoelectronic applications and discusses methods to improve the conductive and interfacial properties. Finally, in an outlook, the use of these types of metal nanoparticle inks to manipulate light management properties, such as outcoupling, in the device is investigated.
关键词: embedded silver and copper grid,metal nanoparticle ink,inkjet-printed electronics,transparent electrode,solution-processed optoelectronics
更新于2025-09-23 15:23:52
-
Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes
摘要: Stability of conductive ink and mechanical ?exibility of conductive pattern are essential for ?exible printed electronics. In this work, we reported a stable reactive silver ink for the facile fabrication of ?exible electrodes. The ink was mainly composed of silver-isopropanolamine (IPA) complex, formic acid reductant, and hydroxyethyl cellulose (HEC) adhesive agent, and it displayed good chemical stability. The ?exible electrodes on polyimide (PI) substrates were achieved by mask-printing and thermal sintering of the ink, and the e?ects of sintering parameters and HEC adhesive agent content on the electrical and ?exible properties and microstructure evolutions of silver layer were systematically investigated. Consequently, the silver layer sintered at 110 °C yields low electrical resistivity of 12.1 μΩ·cm, which is only eight times higher than that of bulk silver. Furthermore, the sintered silver layer still presents excellent ?exibility and low relative resistances after the bending, twisting, and folding tests. These results demonstrate that the stable reactive silver ink provides a promising and low cost opportunity for low temperature design and fabrication of high performance ?exible printed electronics.
关键词: Reactive silver ink,High conductivity,Silver layer,Flexibility,Printed electronics
更新于2025-09-23 15:23:52
-
A simple, low cost ink system for Drop-On-Demand printing high performance metal oxide dielectric film at low temperature
摘要: We have successfully developed an ink system containing cheap raw materials through a simple process and have printed ZrOx dielectric film at a relatively low annealing temperature of 250 °C. The ZrOx dielectric film afforded a leakage current density of 5.4×10-6 A/cm2 at 1 MV/cm and a dielectric constant of 10, which shows promising future for flexible electronics. The ink system shows a temperature-induced gelation behavior and gel network is formed when temperature rises. A high concentration of oxide precursors is obtained near the network area through the absorption function of polymer groups, and thus oxide structure can be formed at a relatively low temperature due to the shorter diffusion path of precursor polymerization. The microstructure of printed ZrOx film was investigated by High Resolution Transmission Electron Microscope (HRTEM), Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the effect of annealing temperature on film structure was studied.
关键词: dielectric film,low temperature,Low cost,ink system,Drop-On-Demand printing
更新于2025-09-23 15:23:52
-
[IEEE 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) - Paris (2018.7.8-2018.7.13)] 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) - Tattoo Inks EM Characterization for MRI Interaction Evaluation
摘要: The lack of knowledge about the safety implications of tattooed individuals subjected to Magnetic Resonance Imaging (MRI) may, sometimes, lead to an exaggerate reaction from physicians such as the avoidance of the exam for tattooed patients. To explore the actual risks, in this work, the magnetic and electrical properties of five different tattoo inks have been measured to investigate their interaction with the MRI electromagnetic (EM) fields. Results highlight that the magnetic and electrical behaviour strongly depend on the type of analyzed ink. Magnetic measurements also reveal a different response between the ink solutions and the relative pigments.
关键词: Magnetic Resonance Imaging,electrochemical impedance,magnetization measurements,tattoo ink,Electrical conductivity,tattoo pigment
更新于2025-09-23 15:23:52
-
[IEEE 2018 International Flexible Electronics Technology Conference (IFETC) - Ottawa, ON, Canada (2018.8.7-2018.8.9)] 2018 International Flexible Electronics Technology Conference (IFETC) - Low Temperature (80 °C) Sinterable Particle Free Silver Ink for Flexible Electronics
摘要: For the emerging field of flexible printed electronics, ink compatibility with substrate is always required. However, most of the commercial silver nanoparticle-based inks are not compatible with flexible substrates, as they need high- sintering temperatures (~150-250 0C). In addition, silver nanoparticle-based inks have several serious problems such as a complex synthesis protocol, high cost, particle aggregation, nozzle clogging, reduced shelf life, and jetting instability. These shortcomings in conductive inks are barriers for their wide spread use in practical applications. In this work, we demonstrate a silver-organo-complex (SOC) based particle free silver ink which can decompose at 80 0C and becomes conductive at this low temperature. The inkjet-printed film from this ink exhibits not only high conductivity but also excellent jetting and storage stability. To demonstrate the suitability of this ink for flexible electronics, an inkjet-printed film on flexible polyimide substrate is subjected to bending and crushing tests. The results before and after flexing and crushing are very similar, thus verifying the excellent tolerance against bending and crushing for this ink as compared to the commercial nanoparticles based ink.
关键词: low-temperature sintering,silver-organo-complex (SOC) ink,bending and crushing test,inkjet-printing,flexible
更新于2025-09-23 15:22:29
-
Fabrication of Stretchable Circuits on Polydimethylsiloxane (PDMS) Pre-Stretched Substrates by Inkjet Printing Silver Nanoparticles
摘要: Several research methodologies have recently been developed to allow for the patterning of conductive lines on elastomeric rubber substrates. Specifically, various conductive materials, substrates, and fabrication techniques were investigated to develop stretchable circuits. One promising technique recommends the application of axial strain on an elastomer substrate prior to patterning conductive lines on it. When the substrate is released, conductive lines buckle to form waves, making the circuit stretchable. However, the majority of applications of stretchable circuits require fitting them to two-dimensional surfaces, such as the human body. Hence, in this paper we propose the concept of radial pre-stretching of the substrates to enhance the stretchability of the fabricated circuits. In particular, straight silver conductive lines were deposited on a polydimethylsiloxane (PDMS) surface using inkjet printing technology, and subsequently tested under both axial and radial loads. Radial pre-stretching was compared to axial pre-stretching, resulting in an improved performance under radial loads. The optimal performance was achieved by pre-stretching the PDMS substrate with a radial strain of 27%. This resulted in stretchable circuits which could sustain radial loads with an average breakdown strain of approximately 19%. Additionally, horseshoe patterns were printed on radially pre-stretched PDMS substrates and their performance was compared to that of their straight line counterparts. Though these patterns are generally favorable for the fabrication of stretchable circuits, the optimal horseshoe pattern examined in this study could only sustain up to 16% radial strain on average when radially pre-stretched by 27%.
关键词: PDMS,inkjet printing,stretchable circuits,pre-stretching,sensors platform,silver nanoparticle ink
更新于2025-09-23 15:22:29
-
Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms
摘要: In recent years, highly sensitive surface-enhanced Raman scattering (SERS) integrated with flexible substrates has drawn increasing attention for label-free detection. In this study, an invisible ink-inspired process was developed for the fabrication of plasmonic Au-based SERS substrates through an on-site redox strategy. Tannic acid (TNA), a common green reagent, was used not only for fabricating various SERS absorbents through a confinement reduction of a Au-TNA complex, but also for supplying an amphiphilic inorganic–organic surface structure for outstanding SERS enhancement at micromolar to nanomolar concentrations for a wide range of compounds. In addition to label-free sensing, this TNA/Au-based SERS substrate provides a versatile analysis platform for studies of chemical and biological reactions. A combination of TNA ink with different metal ions allows for a reliable procedure for the synthesis of a bimetallic AuAg SERS substrate that further enhances the SERS intensity of analyte molecules and extends the lower limit of detection.
关键词: bimetallic AuAg SERS substrate,invisible ink,tannic acid,label-free detection,SERS,plasmonic Au-based SERS substrates,surface-enhanced Raman scattering
更新于2025-09-23 15:21:21