- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Conductive Films Based on Sandwich Structures of Carbon Nanotubes/Silver Nanowires for Stretchable Interconnects
摘要: A variety of conductive films made of a hybrid of two conductive nanomaterials have been used as stretchable electrodes or interconnectors, desirable for stretchable electronic devices. Their intrinsic stretchability of electrical conductivity would allow for accommodating mechanical strain to a certain extent under various deformations. However, few efforts have been made to enhance the interactions between two conductive components in a hybrid system. Herein, we reported new conductive films with tri-layer sandwich structures based on CNTs and AgNWs, encapsulated in silicone rubber, exhibited high stretchability along with insignificant piezoresistivity. They would be suitable to be stretchable interconnectors. A successive vacuum filtration method was used to stack the conductive components layer by layer. The effects of the stacking sequence and the interactions between layers on the stretchability and stability of electrical properties under mechanical deformations were studied. In the case of a tri-layer conductive film comprising two CNT outer layers and one AgNW central layer in presence of enhanced interfacial interactions, it showed exceptionally durability of withstanding repetitive deformations.
关键词: hybrid,silver nanowires,sandwich structure,carbon nanotubes,Stretchable electronics
更新于2025-11-14 15:15:56
-
Selective H2S-sensing performance of Si nanowires through the formation of ZnO shells with Au functionalization
摘要: A novel gas sensor fabricated from ZnO-shelled Si nanowires (SiNWs) is presented. After coating a thin layer of Au on the surfaces of Si NWs, ZnO layers were formed on the surfaces of p-SiNWs by thermal evaporation of Zn powders and a subsequent oxidation process. Microscopic analysis confirmed the successful formation of ZnO-Si core-shell NWs with Au nanoparticles present on the shell surface. The gas sensing performance of the gas sensor fabricated using the p-Si/n-ZnO core-shell NWs was evaluated for various gases. The sensor exhibited outstanding response and selectivity to H2S gas. The gas sensing mechanism was evaluated in detail and attributed to various factors, including the formation of ZnO/Si and Au/ZnO heterojunctions and the chemical attraction between ZnO and Au. The results demonstrate a new sensing material for H2S detection in various fields that can be easily incorporated into Si-based devices.
关键词: Gas Sensor,Si Nanowires,ZnO,Sensing Mechanism,Shell,Au
更新于2025-11-14 15:15:56
-
Influence of thermal oxidation temperature on the microstructure and photoelectrochemical properties of ZnO nanostructures fabricated on the zinc scraps
摘要: In this paper, zinc oxide (ZnO) nanowires were synthesized by thermal oxidation method of zinc scrap at various temperatures ranging between 400 °C and 900 °C under air atmosphere. The influence of different temperature on the phase structures, surface morphologies and photoelectrochemical (PEC) properties of ZnO nanowires were investigated. The characterizations were carried out via X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that annealing temperature played a significant role on surface morphology and phase structure. The band gap energy of the ZnO nanowires changed between 3.12 and 3.194 eV. The photoelectrochemical (PEC) study of the ZnO nanowires was investigated in 0.1 M Na2SO4 aqueous solution. The PEC findings represented that the ZnO nanowire annealed at 600 °C had 252.2 mA/cm2 net photocurrent density which was the best efficiency and at least 10 times higher than that of the lowest one at 1.25 V (vs. VRHE). Mott-Schottky analysis showed that the ZnO nanowires behaved as n-type semiconductor. ZnO nanowire annealed at 600 °C had the highest carrier density value (Nd = 9.03 × 10^23). Moreover, the charge transfer behavior of the ZnO nanowires was determined by means of electrochemical impedance spectroscopy (EIS) measurements. As a result, this work recommends that the ZnO nanowires could be good candidate on PEC applications. Also, thermal oxidation method is an efficient method for fabrication of ZnO nanowires.
关键词: Thermal oxidation,Zn scrap,Electrochemical impedance spectroscopy (EIS),ZnO nanowires,Photoelectrochemical (PEC)
更新于2025-09-23 15:23:52
-
A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes
摘要: This paper presents a low frequency piezoelectric vibration energy harvester using ZnO nanowires on elastic interdigitated electrodes. The interdigitated electrodes are formed using electroplated Ni and have suspended parts at the edges that are elastic and deformable by applying external force. A spherical Ni ball is used as a proof mass, which transforms a low frequency mechanical vibration into the force applied to deform the elastic electrodes. The ZnO nanowires are grown selectively on the electrodes and can generate a piezoelectric potential when the elastic electrodes are deformed by the proof mass activated by the external mechanical vibration. The proposed operation concept is demonstrated using two different types of energy harvesters, which have simple suspended part and cantilever array structures added to the electrodes, respectively. The output voltage of the fabricated harvesters is measured using a vibration exciter at 6 Hz sinusoidal vibration with an acceleration of 0.5 g. Maximum output power of 12.8 pW and 18.8 pW was generated with a load resistance of 1 MΩ for the harvesters using the simple suspended structure and cantilever array, respectively.
关键词: Spherical Proof Mass,Elastic Interdigitated Electrodes,ZnO Nanowires,Low Frequency Piezoelectric Vibration Energy Harvester
更新于2025-09-23 15:23:52
-
Growth and Self-Assembly of Silicon–Silicon Carbide Nanoparticles into Hybrid Worm-Like Nanostructures at the Silicon Wafer Surface
摘要: This work describes the growth of silicon–silicon carbide nanoparticles (Si–SiC) and their self-assembly into worm-like 1D hybrid nanostructures at the interface of graphene oxide/silicon wafer (GO/Si) under Ar atmosphere at 1000 °C. Depending on GO film thickness, spread silicon nanoparticles apparently develop on GO layers, or GO-embedded Si–SiC nanoparticles self-assembled into some-micrometers-long worm-like nanowires. It was found that the nanoarrays show that carbon–silicon-based nanowires (CSNW) are standing on the Si wafer. It was assumed that Si nanoparticles originated from melted Si at the Si wafer surface and GO-induced nucleation. Additionally, a mechanism for the formation of CSNW is proposed.
关键词: nanoparticles,thermal reduction,silicon carbide,graphene oxide,self-assembly,silicon,nanowires
更新于2025-09-23 15:23:52
-
Nanoparticle Emissions from Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries
摘要: As one of the most promising anode materials for high-capacity lithium ion batteries (LIBs), silicon nanowires (SiNWs) have been studied extensively. The metal-assisted chemical etching (MACE) is a low-cost and scalable method for SiNWs synthesis. Nanoparticle emissions from the MACE process, however, are of grave concerns due to their hazardous effects on both occupational and public health. In this study, both airborne and aqueous nanoparticle emissions from the MACE process for SiNWs with three sizes of 90 nm, 120 nm, and 140 nm are experimentally investigated. The prepared SiNWs are used as anodes of LIB coin cells, and the experimental results reveal that the initial discharge and charge capacities of LIB electrodes are 3636 and 2721 mAh g-1 with 90 nm SiNWs, 3779 and 2712 mAh g-1 with 120 nm SiNWs, and 3611 and 2539 mAh g-1 with 140 nm SiNWs. It is found that, for 1 kW h of LIB electrodes, the MACE process for 140 nm SiNWs produces a high concentration of airborne nanoparticle emissions of 2.48 × 109 particles/cm3; the process for 120 nm SiNWs produces a high mass concentration of aqueous particle emissions, with a value of 9.95 × 105 mg/L. The findings in this study can provide experimental data of nanoparticle emissions from the MACE process for SiNWs for LIB applications, and can help the environmental impact assessment and life cycle assessment of the technology in the future.
关键词: Lithium ion batteries (LIBs),Metal-assisted chemical etching (MACE),Nanoparticle emissions,Silicon nanowires (SiNWs)
更新于2025-09-23 15:23:52
-
Variation in Structural, Electrical and Optical Properties of Selenium Nanowires After Irradiation with Ni6+ Ions
摘要: The effect of Ni ion irradiation on selenium nanowires of 80 nm diameter is studied in the present work. Se nanowires were prepared by using electrodeposition technique in polycarbonate membrane. Changes in the structural, optical and electrical properties are studied using XRD, UV/Vis spectroscopy and current–voltage characteristics, of the pristine and irradiated samples. X-ray diffraction study confirms the variation in peak intensity without any shifting in peak position. Variation in texture coefficient and grain size was clearly observed which is a consequence of changing plane orientation, irradiation induced grain growth and grain fragmentation. A decrease in the optical band gap takes place due to interstitial energy band states in the vicinity of conduction and valence band. IVC also shows variation in the conductivity which is due to the generation of current carriers with the passage of energetic ions.
关键词: Ion irradiation,Optical analysis,Selenium nanowires,Impedance,Electrical properties,Structural analysis
更新于2025-09-23 15:23:52
-
Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation
摘要: Porous structures offer an enormous surface suitable for gas sensing, however, the effects of their quantum quasi-confinement on their molecular sensing capacities has been seldom studied. In this work the gas-sensing capability of silicon nanopores is investigated by comparing it to silicon nanowires using first principles calculations. In particular, the adsorption of toxic gas molecules CO, NO, SO2 and NO2 on both silicon nanopores and nanowires with the same cross sections was studied. Results show that sensing-related properties of silicon nanopores and nanowires are very similar, suggesting that surface effects are predominant over the confinement. However, there are certain cases where there are remarked differences between the nanowire and porous cases, for instance, CO-adsorbed nanoporous silicon shows a metallic band structure unlike its nanowire counterpart, which remains semiconducting, suggesting that quantum quasi-confinement may be playing an important role in this behaviour. These results are significant in the study of the quantum phenomena behind the adsorption of gas molecules on nanostructure’s surfaces, with possible applications in chemical detectors or catalysts.
关键词: Sensing,Chemical sensors,Silicon nanowires,Density functional theory,Molecule adsorption,Porous silicon
更新于2025-09-23 15:23:52
-
Single-Crystal ZnO/AlN Core/Shell Nanowires for Ultraviolet Emission and Dual-Color Ultraviolet Photodetection
摘要: Core–shell nanostructures can combine the advantages of different functional materials to realize property tunability and enhance optical and optoelectrical performance. Here, vertically aligned ZnO/AlN core/shell nanowires have been facilely fabricated by sputtering AlN layer onto the ZnO nanowires grown by vapor phase transport. The morphological and structural characterization reveals that single-crystal AlN shell layer with thickness of ≈15 nm is coated uniformly on the single-crystal ZnO nanowire with diameters of ≈330 nm. The core/shell nanowire exhibits 24 times enhancement of ultraviolet emission and quenching of the deep level emission from ZnO. Moreover, under ultraviolet irradiation (325 nm), the photodetector based on the core/shell nanowire displays higher photoresponsivity (from 3.8 × 103 to 2.05 × 104 A W?1), faster response speed (from 397 to 28 ms), and higher I325nm/Idark ratio (from 453 to 1.1 × 104) than that bare ZnO nanowire device. Under the vacuum ultraviolet (193 nm) illumination, the I193nm/Idark ratio and photoresponsivity are 300 and 381 A W?1, respectively. In one word, this paper employs a facile and general technique to solve a challenging fabrication issue, and obtains perfect crystal core/shell structure with high performance for ultraviolet emission and detection.
关键词: single-crystal core/shell,AlN,ZnO nanowires,ultraviolet emission,dual-color ultraviolet photodetection
更新于2025-09-23 15:23:52
-
Consecutive Interfacial Transformation of Cesium Lead Halide Nanocubes to Ultrathin Nanowires with Improved Stability
摘要: Although all-inorganic CsPbX3 (X=Cl, Br, I) nanocrystals (NCs) have been considered as a promising material for photoelectronic devices, their applications are still limited because of their poor stability and the lack of in-depth understanding. Here, we demonstrate a post-treatment method for the preparation of ultrathin CsPbX3 nanowires (NWs) by treating CsPbBr3 nanocubes with thiourea solution. A systematic study showed a consecutively interfacial transformation process, in which CsPbBr3 nanocubes were first converted to Cs4PbBr6 NCs in the presence of thiourea, followed by a further transformation to CsPbBr3 NCs through an interfacial CsX-stripping process. To reduce the surface energy, an oriented attachment process has been realized and CsPbBr3 NCs aggregated to form ultrathin NWs. The ultrathin CsPbBr3 NWs exhibited high photoluminescence quantum yield (PLQY, up to 60%) and high resistance to water treatment, which can be attributed to the surface passivation by thiourea. In addition to thiourea, cysteine and thioacetamide that contain thiol group can also be used to trigger this transformation. This work can not only offer a facile method for the synthesis of efficient and stable ultrathin CsPbBr3 NWs, but also help to reveal the in-depth mechanisms which may be very useful in the field of metal halide perovskite NCs.
关键词: ultrathin nanowires,oriented attachment,Cs4PbBr6,CsPbBr3,thiourea
更新于2025-09-23 15:23:52