- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- JBSFET
- Robustness
- MOSFET
- Reliability
- Silicon Carbide
- 4H-SiC
- Failure Mechanism
- Short Circuit
- Ruggedness
- silicon photonics
- Electrical Engineering and Automation
- Optoelectronic Information Science and Engineering
- Electronic Science and Technology
- North Carolina State University
- MediaTek, Inc.
- JCET STATS ChipPAC Pte. Ltd.
-
White light emission from a mixture of silicon quantum dots and gold nanoclusters and its utilities in sensing of mercury( <scp>ii</scp> ) ions and thiol containing amino acid
摘要: White light emitting mixture (WLEM) was produced by controlled mixing of blue emitting silicon quantum dots (Si QDs) and orange red emitting gold nanoclusters (Au NCs). The chromaticity color co-ordinate of the WLEM studied using CIE (Commission Internationale del'Eclairage) diagram was found to be (0.33, 0.32), which was very close to that of perfect white light emitting source. The WLEM can also be achieved in the form of gel, solid and film with nearly the same CIE co-ordinates which enhances its utility as white light-emitting source in solid state devices. The reversible and thermo-responsive behaviour of the WLEM broadens its application in thermal sensing. Furthermore, the system was found to be showing fast, sensitive and selective detection of Hg2+ ions and thiol containing amino acid cysteine.
关键词: Hg2+ ions,white light emitting mixture,silicon quantum dots,cysteine,gold nanoclusters
更新于2025-11-20 15:33:11
-
Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation
摘要: Knowledge about photobleaching properties of the fluorescent surface defects of the semiconductor quantum dots (QDs) is crucial for their applications. Here, the photobleaching properties of the fluorescent surface defects of the colloidal 3C-SiC QDs are reported. The combined experimental and theoretical study reveals that the observed violet fluorescence at around 392 nm stems from the carboxylic acid group-related surface defects. When the SiC QDs are exposed to the UV irradiation, the 392 nm fluorescent surface defects show both reversible and irreversible photobleaching, whereas the 438 nm fluorescent surface defects show only irreversible photobleaching. The photochemical mechanisms dominating these phenomena are explored. The photobleaching property of the SiC QDs is utilized to detect the solar UV irradiation with high accuracy. The photobleaching of the SiC QDs is highly sensitive to the hydrogen or metal ion concentration in the colloid solution. These findings deepen the understanding of the properties of the fluorescent surface defects of the SiC QDs and pave the way for their applications in sensing.
关键词: photobleaching,silicon carbide quantum dots,surface defects,fluorescence mechanism
更新于2025-11-19 16:46:39
-
Copper-Based Volumetric Filler Dedicated for Ag Paste for Depositing the Front Electrodes by Printing on Solar Si Cells
摘要: In this work we present research results on a new paste NPCuXX (where: NP—new paste, CuXX—component, XX—a modifier consisting of Ni and other important elements) based on a copper composite (CuXX) for fabrication of front electrodes in silicon solar cells. The CuXX composite is obtained by chemical processing of copper powder particles and can be used in two ways: as an additive to commercially available paste or as a base material for a new paste, NPCuXX. The CuXX offers the possibility to exchange up to 30 and 50 wt.% Ag into Cu, which significantly decreases the solar cells material costs, and therefore, the overall solar cell price. Emphasis was placed on a proper mass suitable fabrication process of the CuXX component. The NPCuXX paste has been applied both to conventional cell structures such as aluminum-back surface field (Al-BSF) and passivated emitter and rear contact (PERC), and finally solar cells with front electrodes deposited by screen-printing method were fabricated and characterized by current-voltage techniques. This paper reports the first implementation of the copper volumetric material into a screen print paste used in a high-temperature metallization process to fabricate the front contacts of Si solar cells with a highest fill factor of 77.92 and 77.69% for the abovementioned structures, respectively.
关键词: crystalline silicon solar cells,front electrode,copper-based volumetric filler
更新于2025-11-14 17:04:02
-
Nondestructive nanofabrication on monocrystalline silicon via site-controlled formation and removal of oxide mask
摘要: A nondestructively patterned silicon substrate serves as an ideal support for forming high-quality optical structures or devices. A new approach was proposed for fabricating site-controlled structures without destruction on a monocrystalline silicon surface via local anodic oxidation (LAO) and two-step postetching. The nondestruction was demonstrated by conductivity detection with conductive atomic force microscopy (AFM), and an almost perfect crystal lattice was observed from the fabricated hillock by high-resolution transmission electron microscopy (HRTEM). By programming AFM tip traces for LAO processing, site-controlled nondestructive patterns with di?erent layouts can be produced. This approach provides a new route for realizing nondestructive optical substrates.
关键词: conductive atomic force microscopy,high-resolution transmission electron microscopy,local anodic oxidation,nondestructive nanofabrication,monocrystalline silicon
更新于2025-11-14 17:04:02
-
Effect of counter-surface chemistry on defect-free material removal of monocrystalline silicon
摘要: To bring light on material removal remains fundamental for promoting the advancement of nanotechnology. In this study, nanoscratching test on silicon surface against Al2O3 microsphere was performed using an atomic force microscope, and the material removal by SiO2 microsphere sliding was taken as a comparison. It was found that nanochannels can be produced on silicon surface by Al2O3 microsphere scratching under much lower contact pressure than the yield limit for plastic deformation, which can be ascribed to water-participated tribochemical reactions. The tribochemical removal was verified by high resolution transmission electron microscope (HRTEM) detection. Further analysis indicates that the tribochemical reactions on silicon surface are strongly affected by the counter-surface chemistry. It is noted that counter-surface chemistry influences the tribochemical reactions via altering the activation energy barrier for forming bonding bridge, and has little influence on decreasing the activation energy barrier for the rupture of Si-Si backbonds in silicon substrate. Compared with SiO2 tip, Al2O3 tip has longer working life span, and the nanochannels fabricated by Al2O3 tip under the same processing conditions exhibit better uniformity even in KOH solution. The results provide useful knowledge for chemical mechanical polishing and tip-based nanomanufacturing processes, and shed new light for enriching the basic theory of nanotribology.
关键词: Tribochemical removal,Nanoscratching,Counter-surface chemistry,Alumina/silicon pair
更新于2025-11-14 17:03:37
-
Luminescent Composites Based on Tetrafluoroethylene Copolymer Porous Films Produced by the Diffusion Embedding of Semiconductor Nanoparticles in a Supercritical Medium
摘要: A method for creating film composites based on a new material—a fibrous copolymer of tetrafluoroethylene and vinylidene fluoride—using the diffusion embedding of ready-made nanoparticles into a porous matrix in a supercritical (SC) carbon dioxide medium is developed. The method of cold or hot pressing of impregnated porous films was used at the final stage of creation of such composites. The peculiarities of the effect of the supercritical fluid treatment of porous copolymer films on the surface structure of pressed films are discussed. Luminescent composites with semiconductor nanoparticles of cadmium selenide and nanocrystalline silicon are obtained; their radiation covers a range of 500–1000 nm. The change in the luminescence properties of the resulting nanocomposites under the action of excitation laser radiation at 405 nm is demonstrated.
关键词: cadmium selenide,film composite,fibrous matrix,luminescent properties,diffusion embedding,nanocrystalline silicon
更新于2025-11-14 15:30:11
-
Towards High Solar Cell Efficiency with Low Material Usage: 15% Efficiency with 14 ?μm Polycrystalline Silicon on Glass
摘要: This work showcases a bottom-up approach to creating silicon solar cells using a line-shaped laser. We report efforts to create thicker amorphous silicon passivation and contact layers as well as laser firing for low contact resistance. Collectively, a new in-house record efficiency of 15.1 % was achieved along with a clear pathway to reach 16 % efficiency with optimization of series resistance.
关键词: Foreign substrates,Liquid phase crystallized silicon,Passivation,Silicon Heterojunction Interdigitated back contact,Laser fired contacts
更新于2025-11-14 15:25:21
-
Assessment of Bulk and Interface Quality for Liquid Phase Crystallized Silicon on Glass
摘要: This paper reports on the electrical quality of liquid phase crystallized silicon (LPC-Si) on glass for thin-film solar cell applications. Spatially resolved methods such as light beam induced current (LBIC), microwave photoconductance decay (MWPCD) mapping, and electron backscatter diffraction were used to access the overall material quality, intra-grain quality, surface passivation, and grain boundary (GB) properties. LBIC line scans across GBs were fitted with a model to characterize the recombination behavior of GBs. According to MWPCD measurement, intra-grain bulk carrier lifetimes were estimated to be larger than 4.5 μs for n-type LPC-Si with a doping concentration in the order of 1016 cm?3. Low-angle GBs were found to be strongly recombination active and identified as highly defect-rich regions which spatially extend over a range of 40–60 μm and show a diffusion length of 0.4 μm. Based on absorber quality characterization, the influence of intra-grain quality, heterojunction interface, and GBs/dislocations on the cell performance were separately clarified based on two-dimensional (2-D)-device simulation and a diode model. High back surface recombination velocities of several 105 cm/s are needed to get the best match between simulated and measured open circuit voltage (Voc), indicating back surface passivation problem. The results showed that Voc losses are not only because of poor back surface passivation but also because of crystal defects such as GBs and dislocation.
关键词: Bulk lifetime,heterojunction,grain boundaries (GBs),two-dimensional (2-D)-device simulation,liquid phase crystallized silicon (LPC-Si),light beam induced current (LBIC)
更新于2025-11-14 15:25:21
-
Aluminum-Doped Zinc Oxide as Front Electrode for Rear Emitter Silicon Heterojunction Solar Cells with High Efficiency
摘要: Transparent conductive oxide (TCO) layers of aluminum-doped zinc oxide (ZnO:Al) were investigated as a potential replacement of indium tin oxide (ITO) for the front contact in silicon heterojunction (SHJ) solar cells in the rear emitter configuration. It was found that ZnO:Al can be tuned to yield cell performance almost at the same level as ITO with a power conversion efficiency of 22.6% and 22.8%, respectively. The main reason for the slight underperformance of ZnO:Al compared to ITO was found to be a higher contact resistivity between this material and the silver grid on the front side. An entirely indium-free SHJ solar cell, replacing the ITO on the rear side by ZnO:Al as well, reached a power conversion efficiency of 22.5%.
关键词: photovoltaics,silicon heterojunction,rear emitter,transparent conductive oxide
更新于2025-11-14 15:25:21
-
Silicon Corrosion in Neutral Media: The Influence of Confined Geometries and Crevice Corrosion in Simulated Physiological Solutions
摘要: Silicon (Si) based implantable components are widely used to restore functionalities in the human body. However, there have been reported instances of Si corroding after only a few years of implantation. A key parameter often overlooked when assessing Si stability in-vitro, is the added constricting geometries introduced through in-vivo implantation. The influence of crevices and confined solutions on the stability of Si is presented in this study, considering two simulated physiological solutions: 0.01 M phosphate buffered saline (PBS) and HyClone Wear Test Fluid (WTF). It was found that Si is highly vulnerable to corrosion in confined/crevice conditions. High pitting corrosion susceptibility is found in a crevice, whereas a dissolution rate of ca. 3.6 nm/h at body temperature occurred due to local alkalization within a confined cathodic area. The corrosion rates could be increased by elevating the temperature and yielded linear Arrhenius relations, with activation energies of 106 KJ/mol in 0.01 M PBS and 109 KJ/mol in HyClone WTF, corresponding to a phosphorous-silicon interaction mechanism. Phosphorous species favored corrosion and contributed to enhanced Si dissolution, while chlorides were not so influential, and applied anodic potential induced pseudo-passivation. These results highlight the importance geometrical configurations can have on a material’s surface stability.
关键词: Silicon,Confined geometries,Corrosion,Physiological solutions,Implantable devices,Phosphorous-silicon interaction,Crevice
更新于2025-11-14 15:19:41