- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
High-performance PZT-based Stretchable Piezoelectric Nanogenerator
摘要: Stretchable piezoelectric nanogenerators (SPNG) are highly desirable for power supply of flexible electronics. Piezoelectric composite material is the most effective strategy to render piezoelectric nanogenerators stretchable. However, the generated output performance is unsatisfactory due to the low piezoelectric phase proportion. Here we demonstrate a high-performance Pb(Zr0.52Ti0.48)O3 (PZT) -based stretchable piezoelectric nanogenerator (HSPG). The proposed HSPG exhibits excellent output performance with a power density of ~81.25μW/cm3, dozens of times higher than previously reported results. Mixing technique, instead of conventional stirring technology, is used to incorporate PZT particles into solid silicone rubber. The filler distribution homogeneity in matrix is thus remarkably improved, allowing higher filler composition. The PZT proportion in composite can be increased to 92wt% with satisfactory stretchability of 30%. Based on the excellent electrical and mechanical properties, the proposed HSPG can be attached to human body to harvest body kinetic energy with multiple deformation modes. The obtained energy can be used to operate commercial electronics or be stored into a capacitor. Therefore, our HSPG has great potential application in powering flexible electronics.
关键词: energy harvesting,PZT,Piezoelectric composite,stretchable nanogenerator
更新于2025-11-21 11:18:25
-
A highly stretchable, transparent and conductive wood fabricated by in-situ photopolymerization with polymerizable deep eutectic solvents
摘要: The rational design of high-performance flexible transparent electrically conducting sensor attracts considerable attention. However, these designed devices predominantly utilize glass and plastic substrates, which are expensive and not environmentally friendly. Here, novel transparent and conductive woods (TCWs) were fabricated by using renewable wood substrate and low-cost conductive polymer. Polymerizable deep eutectic solvents (PDES), acrylic-acid (AA)/choline chloride (ChCl), were used as backfilling agents and in-situ photopolymerized in the delignified wood, which endowed the materials with high transparency (transmittance of 90 %), good stretchability (strain up to 80 %), and high electrical conductivity (0.16 S m-1). The retained cellulose orientation and strong interactions between cellulose-riched template and poly(PDES) render the TCWs excellent mechanical properties. Moreover, the TCWs exhibited excellent sensing behaviors to strain/ touch, even at low strain. Therefore, these materials can be used to detect weak pressure such as human being’s subtle bending-release activities. This work provides a new route to fabricate functional composite materials and devices which have promising potential for electronics applications in flexible displays, tactile skin sensors and other fields.
关键词: deep eutectic solvent,stretchable wood,porous,transparent wood,strain/touch sensor
更新于2025-11-21 11:18:25
-
Colour-tunable 50% strain sensor using surface-nanopatterning of soft materials via nanoimprinting with focused ion beam milling process
摘要: We designed and fabricated surface-nanopatterned, stretchable strain sensors featuring structural coloration. Sub-micrometre diffractive patterns were fabricated via focused ion beam (FIB) milling using a silicon wafer as a mould. The mould patterns were transferred to a soft elastomer material, such as polydimethylsiloxane, via nanoimprinting. We determined the surface-nanopatterned geometries responsible for colour tuning performance of the sensors. The sensor was extended (strained) to 50% of the original length without breaking, to calibrate changes in colour with strain. Strain in grossly deformed parts of soft robots was visualised by colour change, without any requirement for electrical measurements.
关键词: Sensor,Stretchable,Nano manufacturing
更新于2025-11-21 10:59:37
-
Multi-scale ordering in highly stretchable polymer semiconducting films
摘要: Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π–π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films.
关键词: charge carrier mobility,conjugated polymers,solution shearing,stretchable semiconductors,roll-to-roll coating,multi-scale ordering
更新于2025-11-19 16:56:35
-
Highly Stretchable, High‐Mobility, Free‐Standing All‐Organic Transistors Modulated by Solid‐State Elastomer Electrolytes
摘要: Highly stretchable, high-mobility, and free-standing coplanar-type all-organic transistors based on deformable solid-state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i-TPU), thereby showing high reliability under mechanical stimuli as well as low-voltage operation. Unlike conventional ionic dielectrics, the i-TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 μF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i-TPU-based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low-voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on-current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free-standing, fully stretchable, and semi-transparent coplanar-type all-organic transistors can be fabricated by introducing a poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low-voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.
关键词: free-standing all-organic transistors,stretchable and conformal electronics,high-mobility,elastomer electrolyte,low-voltage operation
更新于2025-11-14 17:28:48
-
Large-scale fabrication of highly elastic conductors on a broad range of surfaces
摘要: Recently, a great stretchability progress has been witnessed in elastic electronics. However, such electronics are either costly, toxic, or cannot pattern on a broad range of substrates which limit their large-scale fabrications and applications. Here, to overcome those limitations, an ink comprising liquid metal particles and desirable polymer solutions is developed. The polymer solutions in our ink can be adjusted to print on different surfaces and avoid toxic organic solvents in most cases. The ink can be sintered by small strain (~10%) in room temperature. Using our ink, conductors with high stretchability (380,000 S/m at a strain of 1000%) can be printed in low consumption (liquid metal consumption 3.27 mg/cm2), in large area (bestrew entire surface of a T-shirt) and in high throughputs (~105 cm2 per hour). The ink can be printed on a T-shirt to achieve a smart wearable platform that integrates electronics for strain/electrophysiology/electrochemistry detection, and temperature monitoring/controlling.
关键词: Stretchable conductors,wearable devices,low-cost,liquid metal,large-scale fabrication,printable electronics
更新于2025-11-14 15:19:41
-
Conductive Films Based on Sandwich Structures of Carbon Nanotubes/Silver Nanowires for Stretchable Interconnects
摘要: A variety of conductive films made of a hybrid of two conductive nanomaterials have been used as stretchable electrodes or interconnectors, desirable for stretchable electronic devices. Their intrinsic stretchability of electrical conductivity would allow for accommodating mechanical strain to a certain extent under various deformations. However, few efforts have been made to enhance the interactions between two conductive components in a hybrid system. Herein, we reported new conductive films with tri-layer sandwich structures based on CNTs and AgNWs, encapsulated in silicone rubber, exhibited high stretchability along with insignificant piezoresistivity. They would be suitable to be stretchable interconnectors. A successive vacuum filtration method was used to stack the conductive components layer by layer. The effects of the stacking sequence and the interactions between layers on the stretchability and stability of electrical properties under mechanical deformations were studied. In the case of a tri-layer conductive film comprising two CNT outer layers and one AgNW central layer in presence of enhanced interfacial interactions, it showed exceptionally durability of withstanding repetitive deformations.
关键词: hybrid,silver nanowires,sandwich structure,carbon nanotubes,Stretchable electronics
更新于2025-11-14 15:15:56
-
Impact of Substrate Characteristics on Stretchable Polymer Semiconductor Behavior
摘要: Stretchable conductive polymer films are required to survive not only large tensile strain but also stay functional after the reduction in applied strain. In the deformation process, the elastomer substrate that is typically employed plays a critical role in the response of the polymer film. In this study, we examine the role of a PDMS elastomer substrate on the ability to achieve stretchable PDPP-4T films. Specifically, we consider the adhesion and near surface modulus of the PDMS tuned through UV/ozone treatment on the competition between film wrinkling and plastic deformation. We also consider the role of PDMS tension on the stability of films under cyclic strain. We find that increasing the near-surface modulus of the PDMS and maintaining the PDMS in tension throughout the cyclic strain process promotes plastic deformation over film wrinkling. In addition, the UV/ozone treatment increases film adhesion to the PDMS resulting in significantly reduced film folding and delamination. For 20 min UV/ozone treated PDMS, we show that a PDPP-4T film RMS roughness is consistently below 3 nm for up to 100 strain cycles with a strain range of 40 %. In addition, while the film is plastically deforming, the microstructural order is largely stable as probed with grazing incidence X-ray scattering and UV-visible spectroscopy. These results highlight the importance of the neighboring elastomer characteristics on the ability to achieve stretchable polymer semiconductors.
关键词: Yield strain,Stretchable electronics,Deformability,Polymer semiconductors,Adhesion energy
更新于2025-09-23 15:23:52
-
Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor
摘要: The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of 1.4 Ω/cm could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.
关键词: flexible,self-assembly,Fiber conductor,stretchable,silver nanowires.
更新于2025-09-23 15:23:52
-
[IEEE 2018 International Flexible Electronics Technology Conference (IFETC) - Ottawa, ON, Canada (2018.8.7-2018.8.9)] 2018 International Flexible Electronics Technology Conference (IFETC) - Smart Fibers Based on Low Dimensional Conductive Materials
摘要: The fragility of traditional metallic or semi-conductive materials hinders their application in flexible electronics. Low dimensional materials including carbon nanotubes, graphene and metal nanowires own outstanding flexibility and have been wildly used to fabricate flexible devices. Bendable/stretchable substrate is another key component of flexible electronics. Various thin polymer films made of polyethylene terephthalate, polyimide, polydimethylsiloxane et. al. were adopted. However, the air impermeability of these substrates will cause discomfort of humanbeing if applied in wearable electronics. Fiber is an ideal substrate for flexible and wearable electronics due to its excellent flexibility/stretchability, superior breathability, abundant microstructure and low cost. Herein, a series of conductive elastomers and strain sensors were fabricated by combining the low dimensional conductive materials with fiber substrates and regulating the microstructure on the interface. With the help of 'twining spring' hierarchical architecture, silver nanowire-double covered yarn (Ag NW-DCY) composite fibers with ultrahigh stretchability were obtained. The conductivity of the composite fibers reached up to 104 S/cm and remained 90% at 2000% tensile strain. Commercial electronic components (LED arrays) were integrated onto a transparent, foldable and stretchable substrate using the composite fibers as stretchable electric wiring, demonstrating the potential application in large-area stretchable electronics. When AgNWs were replaced with graphene, strain sensing fiber with high sensitivity and large working range (100% strain) were fabricated, which enabled the detection of multiple deformation forms, including tensile strain, bending, and torsion. We employ the fibers as wearable sensors, realizing the monitoring of full-range human activities and intricate movement combinations of a robot. Besides, these fibers exhibits fast response, low hysteresis and excellent cycling stability. Another advantage needs to be noted is that these fiber are fabricated by a facial dip coating method, which can be scaled up easily. These smart fibers are of great meaning to the development of flexible and wearable electronics.
关键词: smart textiles,stretchable conductive fibers,wearable electronics
更新于2025-09-23 15:22:29