修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

43 条数据
?? 中文(中国)
  • Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline

    摘要: In order for the removal of Tetracycline (TC) in wastewaters, an efficient binary Bi2WO6/CuBi2O4 Z-scheme heterojunction photocatalyst was synthesized by loading Bi2WO6 (BWO) nanoparticles on CuBi2O4 (CBO) nanorods via a solvothermal route. The obtained Bi2WO6/CuBi2O4 composite displays photocatalytic activity for TC degradation more than five times higher than that for pure CBO nanorods. The recycling experiment shows that over 91% of TC can be photo-degraded by the optimal Bi2WO6/CuBi2O4 photocatalyst within 60 min even after four cycles. Results of SEM, transient photocurrent response, EIS measurement prove that solvothermal process for BWO loading can introduce rough surface with high-density negative charge on CBO, contributing to effective photo-induced carrier transfer. XPS, Mott?Schottky plots and PL spectra reveal that the loading of BWO as well as interfacial charge redistribution can induce the formation of interfacial electric field for Z-scheme heterojunction, contributing to the high oxidation and reduction capabilities ability of Bi2WO6/CuBi2O4 composite. The study on photocatalytic mechanism discloses that hole (h+) and superoxide radical (?O2?) are dominating reactive oxidation species (ROS) in the photodegradation process. This study has provided a novel route to fabricate Z-scheme photocatalysts for effective photocatalytic degradation processes.

    关键词: charge transfer,Z-scheme heterojunction,environmental materials,interfacial electric field,photocatalysis,tetracycline degradation

    更新于2025-11-21 10:59:37

  • Detection of Tetracycline in Water Using Glutathione-protected Fluorescent Gold Nanoclusters

    摘要: Tetracycline (Tc), a widely used antibiotic, is one of the major pollutants in water. Herein, glutathione (GSH)-protected Au nanoclusters (GSH-AuNCs) were prepared to detect Tc. The fluorescence quenching ratio of GSH-AuNCs shows an excellent linear response against tetracycline in the concentration range of 50 μg/L – 50 mg/L with the detection limit of 5.31 μg/L. For the test paper prepared by GSH-AuNCs, 1 mg/L Tc caused a significant difference that could be recognized by the naked eye. The method exhibited good selectivity and excellent recovery when applied to a tap water sample. The method has the potential for Tc detection in real samples.

    关键词: tetracycline detection,Au nanocluster,glutathione,recovery experiment,quenching ratio

    更新于2025-11-19 16:56:35

  • A high-performance photocatalyst of ZnTCPP sensitized porous graphitic carbon nitride for antibiotic degradation under visible light irradiation

    摘要: In this paper, a highly efficient photocatalyst of ZnTCPP sensitized g-C3N4 was successfully constructed via a facile thermal polycondensation method. The FT-IR and XRD data indicated that ZnTCPP molecules were successfully condensed on the surface of g-C3N4 through amide groups as the bridging units. The optimum 10%ZnTCPP/g-C3N4 composites exhibits excellent enhanced photocatalytic activity for decomposing both methylene blue (MB) and tetracycline (TC) under visible light with long-term reusability and elimination rates of 96% and 80.3%, respectively. The superior visible light photocatalytic performance was mainly attributed to the highly efficient separation of electron-hole pairs and the enhanced solar light utilization, as demonstrated by photoluminescence (PL), electrochemical impedance spectra (EIS), photocurrent responses, and UV-vis diffuse reflectance spectroscopy (DRS). The active species trapping and terephthalic acid (TA) fluorescence experiments indicated that ·OH was the dominating reactive oxidizing species for TC degradation. Furthermore, the possible photocatalytic degradation pathways for MB and TC have been proposed based on the UPLC-MS spectrometry. The excellent degradation efficiency of ZnTCPP/g-C3N4 reveals that it has great potential as photocatalysts for practical application to eliminate recalcitrant organic contaminants.

    关键词: Zn meso-tetra (4-carboxyphenyl) porphyrin,Tetracycline,Photocatalyst,Semiconductors,g-C3N4

    更新于2025-11-19 16:46:39

  • Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton Catalyst

    摘要: Novel Fe3O4-decorate hierarchical porous carbon skeleton derived from maize straw(Fe3O4@MSC) was synthesized by a facile co-precipitation process and a calcination process, which was developed as a UV assisted heterogeneous Fenton-like catalyst. The as-synthesized catalysts were characterized via X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), Brunauer-Emmet-Teller(BET) and vibrating sample magnetometer(VSM) at room temperature. The morphology and structure analysis revealed that the as-prepared Fe3O4@MSC retained the original pore morphology of the maize straw material. The non-uniform polyhedral Fe3O4 grew on the whole surface of the MSC, which reduced the aggragation of Fe3O4 and provided more active sites to strengthen the UV-assisted Fenton-like reaction. As a result, the tetracycline(TC) degradation efficiency after 40 min reaction and total organic carbon(TOC) removal efficiency after 2 h reaction of Fe3O4@MSC catalyzing UV-Fenton system reached 99.2% and 72.1%, respectively, which were more substantial than those of Fe3O4@MSC/H2O2(31.5% and 2%), UV/H2O2 system(68% and 23.4%) and UV/Fe3O4/H2O2(80% and 37.5%). The electron spin resonance(ESR) results showed that the ?OH played an important role in the catalytic reaction. A possible degradation pathway of TC was proposed on the basis of the identified intermediates. Overall, the UV assisted heterogeneous Fenton-like process in Fe3O4@MSC improved the cycle of Fe3+/Fe2+ and activated the interfacial catalytic site, which eventually realized the enhancement of degradation and mineralization to tetracycline.

    关键词: Degradation of tetracycline,Heterogeneous Fenton-like catalyst,Fe3O4,Carbon skeleton of maize straw,UV irradiation

    更新于2025-11-14 17:04:02

  • ZIF-8 derived hollow CuO/ZnO material for study of enhanced photocatalytic performance

    摘要: Tetracycline hydrochloride (TC) is a broad-spectrum antibiotic extensively used in medical and veterinary fields. However, its excess harms the environment and human health. Recently, construction of CuO/ZnO heterojunctions has a very good effect in the treatment of organic matter in water. In this study, we used zeolite imidazolate framework (ZIF-8) as initial material to synthesize porous and hollow CuO/ZnO photocatalysts for catalytic degradation of TC. The results show that the synthesized CuO/ZnO has the characteristics of porous hollow polyhedron when the molar ratio of Cu and Zn is 0.1. Obviously, photocatalytic degradation rate was better comparing to CuO/ZnO nanoparticles as well as pure ZnO and CuO particles, respectively, which could reach 87% at 60min under visible light (λ>420 nm) and has good stability. Porous hollow CuO/ZnO composites are very promising for effective and environmentally friendly degradation of tetracycline hydrochloride in water.

    关键词: Photocatalysis,Tetracycline hydrochloride,Zeolite imidazolate frameworks (ZIF-8),Hollow CuO/ZnO

    更新于2025-11-14 17:04:02

  • Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride

    摘要: The traditional synthesis methods of carbon dots (CDs) have some disadvantages of complicated operation and a large amount of energy consumption. To address these limitations, we synthesized yellow-green luminescent CDs at room temperature according to the principle of amine-aldehyde condensation in this work. This reaction is simple, economical, energy saving and is extremely consistent with the concept of green synthesis and sustainable development. In addition, studies have found that tetracycline hydrochloride (TC) can quench the fluorescence of the as-prepared CDs through Inner filter effect (IFE). The changes of the fluorescence intensity also have a good linear relationship with the concentration of TC in the range of 10.0-400.0 μM, and the detection limit is 6.0 μM. This method has been successfully used to determine the tetracycline content of tetracycline tablets. Finally, the interaction mechanism between TC and CDs was analyzed and discussed.

    关键词: room temperature synthesis,tetracycline,carbon dots

    更新于2025-11-14 17:03:37

  • Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy {110} facets

    摘要: Polyhedral Fe3O4 nanoparticles (NPs) with exposed high-energy {110} facets were synthesized by hydro-thermal method using ferrous sulfate and sodium thiosulfate as precursor at 140 °C. The as-synthesized catalysts were characterized via X-ray powder diffraction (XRD), electro impedance spectra (EIS), scanning electron microscope (SEM), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) at room temperature. The well-defined Fe3O4 NPs with exposed high-energy {110} facets distributed a wide size, and the percentage of {110} facets was approximately 38.5% for single Fe3O4 NPs crystal. The synergistic effect of UV irradiation and the polyhedral Fe3O4 NPs improved the photodegradation efficiency of tetracycline (TC). The degradation efficiency of polyhedral Fe3O4 NPs catalyzing UV-Fenton system reached 96.7% after 60 min reaction, which was more substantial than polyhedral Fe3O4/H2O2 system (40%) and spherical Fe3O4 NPs catalyzing UV-Fenton system (28%) after 60 min reaction. The TOC degradation efficiency reached 56.5% for polyhedral Fe3O4 NPs catalyzing UV-Fenton after 120 min reaction, while UV/H2O2 system and spherical Fe3O4 NPs catalyzing UV-Fenton was 36.0% and 22.1% respectively after 120 min reaction. Moreover, polyhedral Fe3O4 NPs catalyzing UV-Fenton system exhibited an extremely wide pH range (from 3.0 to 9.0) for efficient degradation of TC. Simultaneously, the extraordinary high degradation efficiency was based on 10 mM H2O2 concentration, which had low requirement for H2O2. Further, the polyhedral Fe3O4 NPs could be reused for five consecutive cycles while still achieving at 91.7% of its original degradation efficiency and recycled under a magnetic field along with excellent chemical stability. Ultraviolet light assisted heterogeneous Fenton in the polyhedral Fe3O4 NPs system improved the ?OH and O2?- production efficiency and Fe(III)/Fe(II) redox cycle, which consequently achieved an excellent degradation efficiency.

    关键词: heterogeneous UV-Fenton,Polyhedral Fe3O4 nanoparticles,high-energy {110} facets,tetracycline degradation

    更新于2025-11-14 17:03:37

  • Visible-light-driven g-C3N4/Cu2O heterostructures with efficient photocatalytic activities for tetracycline degradation and microbial inactivation

    摘要: g-C3N4/Cu2O composites were successfully synthesized by a facile chemical precipitation method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and UV diffuse reflectance spectroscopy (UV-DRS) techniques were employed to characterize the as-synthesized photocatalysts. The photocatalytic experiments indicated that the g-C3N4/Cu2O composites displayed higher photodegradation activity of tetracycline (TC) and inactivation efficiencies of Escherichia coli (E. coli) as well as Fusarium graminearum (F. graminearum) in comparsion with bare g-C3N4 and Cu2O under visible light irradiation. Photoluminescence (PL) spectra implied that the heterojunction between g-C3N4 and Cu2O could efficiently promote the separation efficiency of photo-induced charge carriers. Active species trapping experiment and electron spin resonance (ESR) analysis revealed that ?O2-, ?OH and h+ played important roles in the photocatalytic process. This study could provide new insights into the design of multifunctional g-C3N4-based photocatalysts for environmental purification.

    关键词: inactivation mechanism,tetracycline,heterostructures,photocatalysis,g-C3N4/Cu2O

    更新于2025-11-14 15:29:11

  • Enhanced Selectivity for Oriented Catalyzing Tetracycline by the Functional Inorganic Imprinted ZnFe <sub/>2</sub> O <sub/>4</sub> @Ag <sub/>3</sub> PO <sub/>4</sub> /SiO <sub/>2</sub> Photocatalyst with Excellent Stability

    摘要: A novel functional inorganic imprinted ZnFe2O4@Ag3PO4/SiO2 photocatalyst was synthesized by a facile sol-gel method combined with the surface imprinting technique, which possessed excellent stability. By optimizing the amount of materials to determine the preferable addition amounts of tetraethoxysilane (TEOS) and tetracycline are 0.06 mL and 0.06 g, respectively. This as-prepared functional inorganic imprinted ZnFe2O4@Ag3PO4/SiO2 photocatalyst was proved to not only exhibit high photocatalytic activity (the photodegradation rate was 61.52% under the simulated sunlight irradiation of 60 min), but also possess a strong oriented ability to selectively recognize and photocatalyze tetracycline (the coe?cient of selectivity (kselectivity) was 5.14 for ciprofloxacin and 3.63 for gatifloxacin). Moreover, the functional inorganic imprinted ZnFe2O4@Ag3PO4/SiO2 photocatalyst prepared with SiO2 as the inorganic imprinted layer have good stability and can be recycled many times. This work not only puts forward a novel design idea of functional semiconductor materials but also is expected to be widely applied to the oriented catalysis for a target substance according to the practical requirement.

    关键词: selectivity,stability,ZnFe2O4@Ag3PO4/SiO2,Inorganic imprinted photocatalyst,tetracycline oriented catalysis

    更新于2025-09-23 15:23:52

  • Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation

    摘要: This study employed the medium pressure UV/peroxymonosulfate (MPUV/PMS), a new sulfate radical-based advanced oxidation process, to eliminate tetracycline (TTC) in water. At pH = 3.7, initial TTC concentration of 11.25 μM, PMS dosage of 0.2 mM and UV dose of 250 mJ cm-2, 82 % of TTC was degraded by MPUV/PMS. The second-order reaction rate constants of TTC with SO4?- and ?OH were found to be 1.4 × 1010 M-1 s-1 and 6.0 × 109 M-1 s-1, respectively. Radical quenching experiments indicated that ?OH played the major role in the degradation of TTC. Higher PMS dosage (0.1 mM~1.0 mM) and higher pH (3~11) could accelerate the TTC removal. Besides, the presence of Cl- (0.1 mM~5.0 mM) and CO32- (0.05 mM~0.5 mM) could also promote the reaction. Eight transformation products (TPs) were identified, and the potential degradation pathways mainly involved hydroxylation, demethylation and decarbonylation processes. The variation in the genotoxicity was investigated using the umu-test, and the results indicate that the genotoxicity of TTC after the MPUV/PMS treatment significantly increased during the initial stage. In addition, the ecotoxicity and mutagenicity of TTC and its TPs were predicted using quantitative structure-activity relationship (QSAR) analysis, and the results revealed that some TPs could have equivalent and even higher toxicity than TTC. MPUV/PMS showed better performance in TTC degradation in real waters than in Milli-Q water. MPUV/PMS is concluded to be an efficient method for removing TTC, but more attention should be paid to the changes of toxicity during this process.

    关键词: Tetracycline,Toxicity,Hydroxyl radical,Sulfate radical,Transformation products

    更新于2025-09-23 15:23:52