修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

567 条数据
?? 中文(中国)
  • Reliability and Ecological Aspects of Photovoltaic Modules || Toxic Materials Used in Thin Film Photovoltaics and Their Impacts on Environment

    摘要: Photovoltaic industry has proved to be a growing and advantageous source of energy as it can be renewable, sustainable, reliable and clean. Significant improvements have been made in materials used and the production processes to reduce the costs, and to avoid possible issues induced by some hazardous materials. However, some health and environment challenges last, which must be overcome to make this technology a source of truly clean energy. This chapter provides an overview on the major environmental impacts of thin film technology associated with the use of toxic materials and the chemicals in the manufacturing processes. A summary of Environmental, Health and Safety issues associated with some thin film technologies like copper indium gallium diselenide (CIS/CIGS), cadmium telluride (CdTe) and amorphous silicon (a-Si) is done, in order to investigate potential infections induced by the environmental release of trace elements, usually coming from chemical vapor inhalation and eventually accidental spills during the manufacturing processes, on the health of humans and animals. Potential solutions will be provided to prevent some environmental issues.

    关键词: waste minimization,recycling,environmental impacts,thin film technology,hazardous materials,toxic chemicals,manufacturing processes

    更新于2025-09-23 15:19:57

  • Reliability and Ecological Aspects of Photovoltaic Modules || Emerging Thin Film Solar Panels

    摘要: Utilizing of photovoltaics (PVs) has been rapidly developing over the past two decades due to its potential for transition from fossil fuels to renewable energy based economies. However, PVs as fuel less energy sources will be sustainable if some issues such as raw materials abundance, production cost, and environmental impacts carefully addressed in their value chains. Among PV technologies, thin film solar panels have been illustrated the potential to reach the sustainability. In this chapter we review some studies about environmental impacts of thin film PVs through life cycle assessment (LCA) and some environmental fate modeling. For the PV technologies, LCA studies need to be conducted to address environmental and energy impacts and encourage the development of PV technologies in a better sustainable way. Three methods of impact assessment in LCA are reviewed and compared, namely, Energy Payback Time (EPBT), Cumulative Energy Demand (CED), and Greenhouse Gases (GHG) emission rate, owing to data and information published in the literature. Generally, most results show promising potential of emerging thin film PVs, especially perovskite solar cells, to reach the best sustainable solution among PV technologies in near future.

    关键词: perovskite solar cell,sustainable energy,emerging thin film photovoltaics,life cycle assessment,environmental impact

    更新于2025-09-23 15:19:57

  • Wafer-scale high-quality Ag thin film using a ZnO buffer layer for plasmonic applications

    摘要: Realizing laterally continuous, ultraflat silver (Ag) single-crystal films is a significant technological challenge. Ag thin film grown on various hetero-substrates has been used in numerous applications, due to its superior electrical and optical properties. To exploit these properties without degradation and apply these films to high-precision patterning, surface plasmonics, and so on, a high-quality thin film having an ultraflat surface and few grain boundaries is needed. A zinc oxide (ZnO) buffer layer can be used to facilitate the growth of a single-crystalline Ag thin film on a sapphire (Al2O3) substrate. ZnO films deposited on Al2O3 substrates have grain boundaries; however, Ag films grown on ZnO are nearly grain-free and close to single-crystalline quality. This can be explained by the exceptionally small extended atomic distance mismatch, of ~0.08%, between Ag and Al2O3, in which the ninth Ag atom and the eighth Al atom are matched in terms of coherence and periodicity. A modified radio frequency sputtering system with a single-crystal Ag target enabled wafer-scale growth of ultraflat, grain-free Ag films. The proposed approach using a ZnO buffer provides a new method for fabricating Ag films with high adhesion, anti-oxidative stability, and superior optical properties, and allows for easy nano-patterning.

    关键词: Surface plasmon,Reflectivity,Ag thin film,EADM,ZnO buffer layer

    更新于2025-09-23 15:19:57

  • Spectral photoluminescence properties of YAG: Ce, R (R: Gd3+, Pr3+, Gd3+ and Pr3+) transparent fluorescent thin film prepared by pulse laser deposition

    摘要: In order to overcome the shortcomings of insufficient red light component and poor thermal stability of commercial white light emitting diode (WLED), YAG:Ce, R (R: Gd3t and Pr3t) fluorescent thin films were prepared by pulse laser deposition (PLD). The composition and microstructure, photoluminescence properties, and red-enhanced mechanism of co-doped YAG fluorescent thin films, as well as the electroluminescence behavior of the corresponding WLEDs were investigated. Results showed that the doping of Pr3t caused the emission spectrum energy of Ce3t to migrate, and an emission peak appeared at 606 nm in the red region. The doping of Gd3t caused the emission spectrum of Ce3t to shift to the red region, and the main peak position of the Ce3t emission spectrum is red-shifted from 523 nm to 548 nm. The YAG:Ce,Pr,Gd fluorescent film not only realized the improvement of red light components and red-shift, but also increased the energy transmission efficiency from 33.3% to 51.9%. Moreover, results of the color coordinate analysis also showed that the co-doping of Gd3t and Pr3t made the luminescence closer to the red region, reducing the color temperatures and hues changed to warm. Thus, tri-doped transparent fluorescent thin film were prospective for WLED application.

    关键词: Photoluminescence properties,Transparent thin film,Pulse laser deposition,YAG:Ce,Tri-doped YAG

    更新于2025-09-23 15:19:57

  • In situ forming of ternary metal fluoride thin films with excellent Li storage performance by pulsed laser deposition

    摘要: In the field of lithium ion battery, conversion-based metal fluoride cathodes are attractive for their excellent theoretical capacity and high voltage. However, the utilization of binary metal fluorides is severely hindered by irreversibility and large voltage hysteresis. The introduction of ternary metal fluorides, like AgCuF3 and CuxFe1-xF2, brings hope to address these shortcomings. To better understand the basic mechanism of conversion reaction in ternary metal fluoride cathodes, the Cu–Fe–F (CFF) thin films were successfully grown in situ by pulsed laser deposition in this work. The physico-chemical properties and electrochemical performance were discussed. Such a CFF solid solution phase presented great cycle stability (82% capacity remains after 100 cycles at current density of 285 mA g?1) and higher energy efficiency (71.8%), which can be attributed to the reversible structural rearrangement after the delithiation process disclosed by ex situ XPS, high-resolution TEM, and selected-area electron diffraction.

    关键词: Thin film,Ternary metal fluoride,Lithium ion battery,Pulsed laser deposition

    更新于2025-09-23 15:19:57

  • Damage-free patterning of thermally sensitive CIGS thin-film solar cells: Can nanosecond pulses outperform ultrashort laser pulses?

    摘要: Nanosecond pulses are usually not considered as a suitable candidate for low-damage processing of heat-sensitive materials due to high thermal effects and significant melt formation. Many studies have shown, that CIGS is thermally sensitive material and ultrashort lasers have been chosen as the primary source for the processing of CIGS cells. However, we report on the P3 scribing of CIGS thin-film solar cells with the ns pulse duration at the wavelength of 2.5 μm – a wavelength close to the mid-infrared region and compare the results with the ps pulses covering traditional wavelengths of 355 nm, 532 nm, 1064 nm, and 1342 nm. In our case, 6 ns pulses at 2.5 μm wavelength outperformed the picosecond laser sources operating at VIS and NIR wavelength range. The minimal P3 scribe conductivity of 4.7 mS/m was achieved for ns laser patterning, corresponding to simulated CIGS module efficiency loss of just 0.01%. We proposed that high absorption in the transparent conductive oxide - TCO efficiently shielded the underlying CIGS with only a fraction of energy reaching the back-contact. Finally, results show that nanosecond pulses can be as competitive as picosecond ones for P3 processing of high-efficiency CIGS devices.

    关键词: CIGS,Nanosecond laser,Scribing,Picosecond laser,VIS and NIR wavelength range,Thin-film

    更新于2025-09-23 15:19:57

  • Stable magnesium zinc oxide by reactive Co-Sputtering for CdTe-based solar cells

    摘要: Magnesium zinc oxide (MZO) is a promising front contact material for CdTe solar cells. Due to its higher band gap than traditional CdS, MZO can reduce parasitic absorption to significantly increase short-circuit current density while also providing a benefit of conduction band offset tuning through Mg:Zn ratio optimization. MZO has been successfully implemented into CdTe devices, however its stability has been of concern. The MZO stability issue has been attributed to the presence of oxygen in the CdTe device processing ambient, leading to double-diode behavior (S-kink) in the current density-voltage curves. Here we report on MZO thin films deposited by reactive co-sputtering. The reactively co-sputtered MZO thin films have encouraging stability, show no significant variation in work function of the surface over a period of 6 months, as measured by Kelvin probe. Energy conversion efficiencies of around 16% have been achieved both with and without presence of oxygen in device processing ambients across multiple research facilities. These efficiencies should be possible to increase further by tuning of the thin film deposition and device processing parameters, especially through optimization of the back contact.

    关键词: Stability,Thin film photovoltaics,Reactive sputtering,CdTe,MgxZn1-xO

    更新于2025-09-23 15:19:57

  • 1D/3D Alloying Induced Phase Transition in Light Absorbers for Highly Efficient Sb <sub/>2</sub> Se <sub/>3</sub> Solar Cells

    摘要: Simple binary inorganic antimony selenide (Sb2Se3) compound is attractive as a promising light absorber for low-cost and high-efficiency photovoltaic. The external quantum efficiencies of Sb2Se3 solar cells are now approaching the optical limit values, which are comparable with the traditional well-developed solar cells (such as Si, CuInGaSe2, CdTe, etc). However, the power conversion efficiency of the Sb2Se3 devices is constrained by the open-circuit voltage (VOC) deficit, due to the intrinsic high resistivity and low element-doping efficiency in such one-dimensional (1D) crystals. In this work, a highly conductive, 3D crystal-structure AgSbSe2 phase, formed by phase transition from low symmetry binary Sb2Se3, is introduced to control the doping density in the alloyed (Sb2Se3)x(AgSbSe2)1-x films by utilizing configurational entropy. Guided by this alloying concept, 1D-3D (Sb2Se3)x(AgSbSe2)1-x alloy films with tunable doping densities are obtained. As a consequence, a noticeable improvement in VOC by >18% is observed in solar cells based on (Sb2Se3)x(AgSbSe2)1-x alloy absorber layer, as compared to the reference cell with a pure Sb2Se3 absorber, leading to a high conversion efficiency of 7.8%. This alloying model provides a universal approach to control the photoelectrical properties for high-efficiency Sb2Se3-based solar cells.

    关键词: thin film solar cells,light absorber,voltage deficit,antimony selenide,1D/3D alloying

    更新于2025-09-23 15:19:57

  • Simulation of three types of nanoparticles on solar cell structure model

    摘要: In this paper, we systemically and numerically investigate the effects of three types of Nanoparticles on the efficiency of solar cells. Finite Difference Time Domain method has been implemented to compute the absorption spectra in such proposed solar cell structure. High efficiency has been achieved by optimizing the nanoparticles layer by tuning the fraction of nanoparticles on the host layer.

    关键词: Thin-film solar cell,FDTD,absorption,metal nanoparticles,reflection

    更新于2025-09-23 15:19:57

  • Growth of BaSi <sub/>2</sub> film on Ge(100) by vacuum evaporation and its photoresponse properties

    摘要: We have successfully grown a polycrystalline orthorhombic BaSi2 film on a Ge(100) substrate by an evaporation method. Deposition of an amorphous Si (a-Si) film on the Ge substrate prior to BaSi2 evaporation plays a critical role in obtaining a high-quality BaSi2 film. By controlling substrate temperature and the thickness of the a-Si film, a crack-free and single-phase polycrystalline orthorhombic BaSi2 film with a long carrier lifetime of 1.5 μs was obtained on Ge substrates. The photoresponse property of the ITO/BaSi2/Ge/Al structure was clearly observed, and photoresponsivity was found to increase with increasing substrate temperature during deposition of a-Si. Furthermore, the BaSi2 film grown on Ge showed a higher photoresponsivity than that grown on Si, indicating the potential application of evaporated BaSi2 on Ge to thin-film solar cells.

    关键词: photoresponse properties,Ge substrate,thin-film solar cells,BaSi2,vacuum evaporation

    更新于2025-09-23 15:19:57