研究目的
Investigating the effects of Nb-doped TiO2 as an electron transport layer on the efficiency of perovskite solar cells through low-temperature synthesis and band alignment tuning.
研究成果
The low-temperature SA method successfully produced highly crystalline Nb-TiO2 films with tunable CB levels, enabling efficient electron transport in PSCs. By optimizing the Nb doping level and the Br/I ratio in the perovskite, a high PCE of 21.3% was achieved, demonstrating the potential of this approach for developing low-temperature processed PSCs.
研究不足
The study focuses on low-temperature processes which may limit the crystallinity and conductivity achievable compared to high-temperature methods. The optimization of Nb doping levels and Br/I ratios is complex and may not be universally applicable to all perovskite compositions.
1:Experimental Design and Method Selection:
The Nb-TiO2 film was prepared by a low-temperature steam-annealing method, involving the treatment of a NbCl5/TiCl4 mixed precursor film coated on an FTO substrate.
2:Sample Selection and Data Sources:
Fluorine-doped tin oxide (FTO) conductive glass substrates were used.
3:List of Experimental Equipment and Materials:
Titanium(IV) chloride, niobium(V) chloride, N,N-dimethylformamide, dimethyl sulfoxide, lead(II) iodide, lead(II) bromide, methylamine hydroiodide, methylamine hydrobromide, formamidine hydroiodide, cesium iodide, lithium bis(trifluoromethylsulfonyl)imide salt, 4-tert-butylpyridine, chlorobenzene, and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD).
4:Experimental Procedures and Operational Workflow:
The precursor solutions were spin-coated on substrates, treated with SA, and then used to fabricate solar cells with a perovskite absorption layer and a hole transport layer.
5:Data Analysis Methods:
The samples were characterized using SEM, EDS, GI-XRD, XPS, UPS, UV-Vis spectrophotometry, and J-V curve measurements under simulated sunlight.
独家科研数据包,助您复现前沿成果,加速创新突破
获取完整内容-
Chlorobenzene
anhydrous
Sigma-Aldrich Co. LLC.
Solvent for perovskite precursor solution
-
Field-emission scanning electron microscopy
SU8000
Hitachi High-technologies Co.
Characterization of nanostructure
-
Ultraviolet photoelectron spectroscopy
KRATOS Nova
Shimazu Co.
Fermi level and valence band energy level determination
-
Ultraviolet-visible spectrophotometer
UV-3600
Shimadzu Co.
Absorbance spectra measurement
-
Titanium(IV) chloride
Wako Chemical Industries Co., Ltd.
Precursor for TiO2 film synthesis
-
Niobium(V) chloride
Wako Chemical Industries Co., Ltd.
Dopant for TiO2 film synthesis
-
N,N-dimethylformamide
Super Dehydrated
Wako Chemical Industries Co., Ltd.
Solvent for perovskite precursor solution
-
Dimethyl sulfoxide
Super Dehydrated
Wako Chemical Industries Co., Ltd.
Solvent for perovskite precursor solution
-
Lead(II) iodide
for perovskite precursor
Tokyo Chemical Industry Co., Ltd.
Precursor for perovskite synthesis
-
Lead(II) bromide
for perovskite precursor
Tokyo Chemical Industry Co., Ltd.
Precursor for perovskite synthesis
-
Methylamine hydroiodide
Tokyo Chemical Industry Co., Ltd.
Precursor for perovskite synthesis
-
Methylamine hydrobromide
Tokyo Chemical Industry Co., Ltd.
Precursor for perovskite synthesis
-
Formamidine hydroiodide
Tokyo Chemical Industry Co., Ltd.
Precursor for perovskite synthesis
-
Cesium iodide
Tokyo Chemical Industry Co., Ltd.
Precursor for perovskite synthesis
-
Lithium bis(trifluoromethylsulfonyl)imide salt
Tokyo Chemical Industry Co., Ltd.
Additive for hole transport layer
-
4-tert-butylpyridine
Sigma-Aldrich Co. LLC.
Additive for hole transport layer
-
2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene
Merck & Co., Inc.
Hole transport material
-
Energy-dispersive X-ray spectroscopy
E-Max 80
Horiba Ltd.
Elemental analysis
-
Grazing-incidence X-ray diffraction
D8 Discover
Bruker Japan K.K.
Crystal structure analysis
-
X-ray photoelectron spectroscopy
PHI 5000 VersaProbe
ULVAC, Inc.
Chemical species identification
-
登录查看剩余18件设备及参数对照表
查看全部