修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM)

DOI:10.1016/j.coal.2020.103445 期刊:International Journal of Coal Geology 出版年份:2020 更新时间:2025-09-23 15:21:01
摘要: Fluorescence spectroscopy via confocal laser scanning microscopy (CLSM) was used to analyze ancient sedimentary organic matter, including Tasmanites microfossils in Devonian shale and Gloeocapsomorpha prisca (G. prisca) in Ordovician kukersite from North American basins. We examined fluorescence emission as a function of excitation laser wavelength, sample orientation, and with respect to location within individual organic entities and in transects across bedded organic matter. Results from spectral scans of the same field of view in Tasmanites with different laser lines showed progressive red-shift in emission maxima with longer excitation wavelengths. This result indicates steady-state Tasmanites fluorescence emission is an overlapping combination of emission from multiple fluorophore functions. Stokes shift decreased with increasing excitation wavelength, further suggesting the presence of multiple fluorophore functions with different S1 → S0 transition energies. This observation also indicates that at longer excitation wavelengths, less absorbed light energy is dissipated via collisional transfer than at shorter excitation wavelengths and may suggest fewer polar functions are preferentially absorbing. Confirming earlier results, emission spectra observed from high fluorescence intensity regions (fold apices) in individual Tasmanites are blue-shifted relative to emission from other locations in the same microfossil. We suggest high intensity emission is from photoselective alignment of polarized excitation with the fluorophore absorption and emission transition moment. The blue shift observed in regions of high intensity emission may be due to relative absence or realignment of polar species, e.g., bridging ether or ester functions, although variations in O abundance could not be confirmed with preliminary time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. Tasmanites occurring in consolidated sediments are flattened from original spherical morphology and, in optical microscopy, this burial deformation results in generally parallel extinction (strain-influenced) and positive elongation. The deformation also induces fluorescence anisotropy observed as variations in emission wavelength when individual Tasmanites are measured from their long axis parallel to bedding, whereas this effect is absent in bedding-normal view. Transects from G. prisca-rich source layers into adjacent reservoir layers show decrease in fluorescence intensity and spectral red-shift (increase in full-width half-maximum with increasing red portion of the half-width). These results may suggest an increase in fluorescence quenching across the source-to-reservoir transition zone, consistent with an increase in aromaticity following petroleum expulsion and migration. These observations are supported by increasing reflectance values measured across similar micro-scale transects. Our results highlight the applicability of CLSM as a broad and under-utilized approach for the characterization of sedimentary organic matter and are discussed with perspective toward petroleum processes and thermal indices research.
作者: Paul C. Hackley,Aaron M. Jubb,Robert C. Burruss,Amy E. Beaven
AI智能分析
纠错
研究概述 实验方案 设备清单

To assess if fluorescence spectroscopy via CLSM can be used as a robust thermal index and potentially assist with more accurate placement of petroleum resource assessment boundaries at the entrance to the oil window.

Confocal laser scanning microscopy (CLSM) was used to characterize the fluorescence response of sedimentary organic matter, including marine alga Tasmanites from Devonian shales of the northern Appalachian Basin, and Gloeocapsomorpha prisca from Ordovician kukersite in the Williston Basin. CLSM experiments examined fluorescence emission as related to excitation wavelength, sample orientation and location within individual organic entities, and on chemical transects documented from prior analytical approaches. Results from varying excitation wavelength demonstrate the presence of multiple fluorophores in Tasmanites, and we interpret reduced Stokes shift at longer excitation wavelengths as due to preferential absorption by less polar functions. We suggest higher intensity emission at fold apices in organic matter may be due to photoselective alignment of the fluorophore transition moment with polarized excitation and that observed blue shifts in high intensity emission could be driven by decreased abundance of polar O-containing functions, although this could not be confirmed through preliminary TOF-SIMS analysis. Optical anisotropy of Tasmanites was observed through variations in fluorescence emission color when the bedding plane-parallel orientation was rotated, whereas no variation in emission color was observed from rotation of the bedding plane perpendicular orientation. CLSM analyses of organic matter chemical transects occurring from Gloeocapsomorpha prisca-rich kukersite into adjacent reservoir facies showed micro-scale increases in fluorescence red-shift, confirming increases in thermal maturity as documented by Raman analyses and solid bitumen reflectance in a prior study. These findings inform petroleum processes research by clarifying and improving usage of organic fluorescence properties as thermal indices through: (1) characterizing in situ changes in fluorescence emission occurring due to conversion of oil-prone sedimentary organic matter to petroleum, and (2) providing insight into the fluorescence properties of organic matter impacted by expulsion and primary migration of petroleum fluids. Further work is warranted to expand the use of CLSM for investigating the molecular properties of ancient sedimentary organic matter and this is a focus of on-going research within the USGS.

Lack of a standard test method or protocols for instrument settings have long been a problem in conventional fluorescence spectroscopy of sedimentary organic matter. Notably, it has been difficult to attain reproducible measurements of fluorescence color, intensity or alteration. Despite that the current work shows promise for application of CLSM to fluorescence spectroscopy, similar limitations are apparent. For example, variation in emission λmax as a function of excitation wavelength indicates users with contrasting laser systems will determine disparate spectral properties for the same sample. Likewise, measurement from high intensity emission areas or certain orientations of sedimentary organic matter may show emission color bias relative to other locations or orientations. These observations indicate need for standardization and specific measurement protocols to ensure inter-laboratory reproducibility for CLSM-based fluorescence spectroscopy.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能模块化扫描电子显微镜,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM)”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期